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ABSTRACT 

This thesis reports on the evolved design, test, and integration of a robotic 

manipulator consisting of multiple modular links, which enable the reconfiguration of the 

manipulator system for differing mission requirements without constructing unique 

hardware for each experimental campaign. 

The evolved design replaced custom components with commercial components to 

improve performance, standardize hardware, and reduce assembly time. Additional links 

were constructed and assembled into a four-link manipulator capable of moving its end-

effector without imparting motion to the base spacecraft. Each joint can be controlled 

independently and provides unique telemetry data via Wi-Fi. 

A mathematical model of the system was implemented, and the kinematic and 

dynamic behaviors calibrated, resulting in confirmation of the validity of the modular 

link manipulator concept. A software code based on this model, the Spacecraft Robotics 

Toolkit (SPART), was published as an open-source kinematics/dynamics and control 

framework for use by the spacecraft robotics community. Future research will investigate 

further upgrades, manipulator control and use in operational scenarios. 
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I. INTRODUCTION 

A. RESEARCH MOTIVATION 

The uses of robotics in the modern world are nearly limitless. From 

manufacturing applications to high-precision surgery, from unmanned aerial vehicles 

(UAVs) to planetary rovers to satellites with manipulator arms, applications for robotics 

abound. Within any one of these application areas, specialized areas of investigation 

emerge. A roboticist must strive to understand hardware like motors and sensors, 

software for control and simulation, the under-lying multi-body mechanics, and the 

various techniques for implementing these pieces into a functional system 

(mechatronics). In areas that are inherently dangerous or inaccessible to humans, like 

outer space, robotic applications are a natural fit.   

Since the 1980s, the notion of using robotic servicing satellites to extend the 

lifetime of on-orbit assets has generated an increasingly large field of interest. Traditional 

satellites continue to be very large and very expensive, typically the result of many years 

of substantial investment. During a satellite’s operational lifetime, any number of 

electrical, mechanical, thermal, propulsion or structural problems may arise and render it 

incapable of performing its mission. A servicing satellite equipped with a robotic 

manipulator may be able to correct or mitigate these problems, and this technology has 

been demonstrated, most notably in Japan’s Experimental Test Satellite 7 (ETS-7), and 

the United States’ Orbital Express mission. Servicing satellites such as these could assist 

in the deployment of a stuck antenna or solar panel, the replenishment of an empty 

propellant tank, or the stabilization of a tumbling spacecraft [1], [2]. For failed spacecraft 

and for other pieces of space junk, a satellite with a manipulator arm could gain control 

of the debris and assist its deorbit or tug it to a location where it will not interfere with 

active missions.  

Among terrestrial manipulators, fixed-based manipulators for use in industrial 

applications are the most common type. Over the years, the mechanics and control theory 

necessary to operate these industrial systems were adapted for use with spacecraft 
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manipulators, taking into account the very important consideration that a satellite with a 

manipulator cannot be treated as a fixed-base manipulator in all cases. If, for example, 

the manipulator is sufficiently large with respect to the base spacecraft, or if the 

manipulator moves faster than a given speed, the action of the arm will impart significant 

reaction onto the base and vice versa.  

To account for this highly nonlinear dynamic coupling, then, the kinematics and 

the dynamics of the system must be modeled and simulated numerically to understand 

how the system will behave for a given number of manipulator links. Further, since one 

cannot simulate all physical effects of the environment (friction forces or sensor noise, 

for example), a hardware validation of the model is necessary. Because of the high mass 

penalty of putting spacecraft into orbit, it is desirable to launch the smallest satellite 

capable of performing a given mission—even if using a smaller satellite means greater 

complexity in the dynamical behavior of the system. With this goal in mind, research at 

the Naval Postgraduate School (NPS) Spacecraft Robotics Laboratory (SRL) on free-

floating spacecraft simulators with multiple-link robotic arms has been ongoing. 

B. STATE OF THE ART 

1. An Overarching Context 

Space-based manipulators and the experimental models used for development and 

simulation have a long heritage, but before discussing the very specific application of a 

satellite-based robotic manipulator, a discussion of the definition of robotics and 

consideration of the state-of-the art of robotics is useful. The experimental and 

operational heritage of the current research effort is discussed, including the early 

examples of floating manipulators, manipulator campaigns aboard the Space 

Transportation System (STS) and the International Space Station (ISS), the Experimental 

Test Satellite 7 (ETS-VII) and Orbital Express missions, and ongoing research efforts 

within academia. 

In her book, The Robotics Primer, Dr. Maja Matarić, the Vice Dean for Research 

at the University of Southern California’s (USC) Viterbi School of Engineering, rigidly 

defines a robot as “an autonomous system which exists in the physical world, can sense 
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its environment, and can act on it to achieve some goals” [3]. While this definition allows 

for systems of varying levels of autonomy, Matarić goes on to deliberately exclude 

manipulators that are controlled via tele-operation—that is, an operator controls the 

manipulator remotely. This exclusion contradicts a reality that is evident in published 

literature: the larger robotics community considers tele-operated manipulators as robots. 

As evidence, the 2015 Institute of Electrical and Electronics Engineers’ (IEEE) 

International Conference on Robotics and Automation (ICRA) and International 

Workshop on Intelligent Robots and Systems (IROS), two very prominent conferences, 

included multiple papers on tele-operation, particularly as it relates to high-precision 

surgery (for example, [4], [5]) but also relating to space operations [6]. Indeed, as a 

general observation, the literature of space manipulators (tele-operated or not) proclaims 

their inclusion in the field of robotics. Therefore, this thesis keeps with the larger 

community in its consideration of tele-operated manipulators as a valid subset of 

robotics.  

Even highly independent, non-tele-operated robots depend upon a human user for 

varying degrees of input (that is, they have varying levels of autonomy). At the more 

sophisticated level, Rethink Robotics touts its industrial robot Baxter as “trained, not 

programmed” [7]. Baxter is a robot that specializes in pick-and-place tasks, but unlike 

other robots, a user can reconfigure Baxter to perform a new task simply by manually 

repositioning its manipulators in the desired sequence [8]. If an object is out of its 

expected place—as it moves along a conveyor belt, for example—a camera mounted in 

Baxter’s wrist will seek the misplaced object and automatically adjust its behavior, and if 

a human co-worker gets in the way, Baxter will sense the collision and safely cease 

operation [8].  

Two versions of the Baxter robot with different end effectors are shown in their 

industrial setting in Figure 1. Industrial robots offer two sharp contrasts to the robotics 

found on spacecraft. First, Baxter has a fixed base, so motion of its manipulators does not 

impart a reaction motion by the base. Second, the complexity of Baxter’s behavior is not 

an option when dealing with a manipulator on an unmanned satellite because there is no 

human nearby to “teach” it. Since autonomous operation of a satellite-based robotic 
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manipulator is a highly sophisticated endeavor, most spacecraft robotic manipulators 

have historically been operated via tele-operation. 

 

Figure 1.  Two Baxter Robots with Different End Effectors. Source: [7]. 

Earth-bound tele-operated robots, like Baxter and other more autonomous earth-

bound manipulators, are (not surprisingly) capable of higher precision and higher 

complexity functions than their space-bound counterparts. In particular, the field of 

surgery via tele-robotics has flourished, but efforts are underway to make the process 

more autonomous. The manipulators pictured in Figure 2 employ as end effectors a 6 mm 

grasper and a 10 mm pair of scissors to remove simulated tumors from simulated tissue 

(left) and to remove simulated damaged skin (right) [9]. These manipulators are 

programmed by a technique that “involves observing human-operated demonstrations 

into motion sequences and transition conditions” and are capable of detecting the 

simulated tumors and dead skin and acting accordingly [9]. Like the manual repositioning 

of Baxter, learning by observation presents intriguing possibilities for the field of 

spacecraft robotics, but because of the dynamic behavior of a spacecraft-manipulator 

system, such a system will likely never be able to achieve the precision of surgical 

robotics. 



5

Figure 2.  Precise Surgical Manipulators. Source: [9]. 

2. Spacecraft Based Manipulators in Experiment and Application

With examples of highly-programmable and highly precise robotic manipulators 

in mind, it is now useful to consider a brief history of spacecraft-based manipulators, both 

those used in the simulation environment and those actually employed in space. The most 

recognized space manipulator is the Shuttle Remote Manipulator System (SRMS) or the 

Canadarm, the original version of which flew on the second Shuttle mission (STS-2, 

Columbia) in 1981 (Figure 3) [10]. The four subsequent Canadarms, including the current 

version aboard the International Space Station (colloquially referred to as Canadarm2), 

have employed programmed routines and tele-operation by astronauts [11]. According to 

interviews with former astronauts Dr. Jim Newman and Captain (Retired) Dan Bursch, 

the light weight of the manipulators relative to their host spacecraft, their relatively slow 

motion, and carefully planned maneuvers mitigate the problem of dynamically coupling 

the manipulator’s motion to that of the spacecraft.  

Because of its enormous size, the ISS is less susceptible to dynamic coupling 

from its manipulators than was the Shuttle. Specifically, “Canadarm2 has a mass of 1,800 

kg, in comparison to the ISS, which has a mass of approximately 420,000 kg,” and its tip 

speed “during station assembly is 2 cm/s, while during [Extra Vehicular Activity] support 

the maximum speed is 15 cm/s” [12]. In essence, the Canadarm2 is so small relative to 
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the ISS and moves so slowly within its preplanned maneuver envelope that the system 

can be treated as a fixed-based manipulator from the perspective of system dynamics. 

However, with the trend toward smaller, more capable satellites in mind, questions about 

how a manipulator’s motion would affect the dynamics of a “small” spacecraft became 

an area ripe for investigation. 

 

Figure 3.  Deployment of the original Canadarm from Columbia. Source: [11]. 

One of the earliest experimental campaigns on small spacecraft-manipulator 

systems began in 1987 under Dr. Kazuya Yoshida at Japan’s Tohuku University with the 

Experimental Free-Floating Robot Satellite (EFFORTS-1, Figure 4) [13]. By this time, 

experimentation on spacecraft robotics had taken place in multiple different experimental 

environments including parabolic airplane flight, neutral buoyancy pools, and tethered 

suspension [13]. The best testing environment, of course, would have been outer space, 

but limited access prevented such an opportunity to all but a few. The most practical 

method—the one employed by Yoshida, by the experimental campaign for this thesis, 

and still the most common method for spacecraft robotics experimentation [14]—was 

employing a flat, smooth surface over which a robot could float on air bearings.  
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Figure 4.  EFFORTS-1 Floating Via Air Bearings. Source: [13]. 

In 1992, the Japanese research team of Kazuo Machida, Yoshitsugu Toda, and 

Toshiaki Itawa published results of their experimentation on a multiple-armed spacecraft 

simulator, the Astronaut Reference Flying Robot (ARFR, Figure 5) [15]. It was a tele-

operated system aimed at “performing in-orbit servicing in the manner of an astronaut 

with a manned maneuvering unit” [15]. Like EFFORTS-1, ARFR was developed as a 

free-floating robot. Meanwhile, Yoshida was working on EFFORTS-2, a two-armed 

floating spacecraft-manipulator system that was functionally similar to the ARFR, 

including its dependence on tele-operation [13]. Experimental campaigns resembling 

ARFR and EFFORTS would continue throughout the 1990s—many at the university 

level.  

One experimental campaign that was fortunate enough to be tested in space was 

Germany’s Robot Technology Experiment (ROTEX). In 1993, ROTEX flew aboard the 

Shuttle and demonstrated the capability for automatic behavior, tele-operation from the 

Shuttle, tele-operation from Earth and “tele-sensor programming (i.e., learning by 

showing in a completely simulated world on-ground, including the sensory perception 
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with sensor-based execution later on-board)” [16]. As a small, on-board manipulator, the 

dynamics of ROTEX, like the dynamics of the unloaded Canadarm, were inconsequential 

to the dynamics of the spacecraft, but the ROTEX experiment demonstrated that 

automation of robotics, the tele-operation of robotics, and the desire to combine these 

technologies on a small spacecraft were developing in parallel. In fact, these technologies 

were actually converging.    

 

Figure 5.  Astronaut Reference Flying Robot (ARFR). Source: [15]. 

The initial convergence came in the form of Japan’s Engineering Test Satellite 7 

(ETS-VII), which was launched November 28, 1997 (Figure 6) [17]. ETS-VII actually 

consisted of two satellites, a 2.5-ton chaser and a 0.4-ton target spacecraft [1] and 

accomplished the “autonomous [rendezvous and docking] by [an] unmanned space 

vehicle for [the] first time in the world” [18]. With a relative mass between the spacecraft 

and the manipulator of 24, the manipulator was small enough that its motion did not 

significantly affect the motion of the base [12]. Further, the robotic manipulator missions 

were conducted by tele-operation from the ground [17]. Thus, while ETS-VII was a very 

important step in the evolution, it falls short of a small spacecraft with relatively large 

manipulator capable of autonomous behavior. 
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Figure 6.  ETS-VII. Source: [17]. 

In March of 2007, the Defense Advanced Research Project Agency (DARPA) of 

the United States launched the Orbital Express mission [2]. In many ways, the 

experimental campaign resembled that of ETS-VII. Orbital Express consisted of a chaser 

vehicle named ASTRO with a six-degree of freedom manipulator named the Orbital 

Express Demonstration Manipulator System (OEDMS) and a target vehicle named 

NextSat [2]. Like ETS-VII, the relatively large size of ASTRO compared to OEDMS—a 

relative mass ratio of 15—prevented significant effects of the manipulator’s motion from 

affecting the base spacecraft itself [12], Unlike ETS-VII, however, Orbital Express was 

capable of conducting operations with “various levels of autonomy,” including 

“operations where only a single command was sent to initiate the test scenario” [2]. 

Space-based robotic manipulators without tele-operation had arrived. 

A spacecraft with a small relative mass compared to its manipulator has yet to fly 

in space, but efforts are underway at the University of Maryland’s Space Systems 

Laboratory to develop the Dynamic Manipulation Flight Experiment Microsat 

(DYMAFLEX, Figure 7). Unlike ETS-VII or Orbital Express, DYMAFLEX is a small 

satellite with a robotic manipulator that is ~14% of the mass of the combined system [19] 
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(a relative mass ratio of 5.3) [11]. Such a small satellite would provide a cheaper 

alternative to launching behemoth satellites with relatively small manipulators, and if the 

coupled dynamics can be controlled and the autonomous behavior accomplished, 

DYMAFLEX could represent the convergence of small satellite and autonomous robotics 

sought since Yoshida began his experiments in the 1980s. 

 

Figure 7.  DYMAFLEX with Deployed Antennas. Source: [19]. 

3. Efforts at the Naval Postgraduate School (NPS) Spacecraft Robotics 
Laboratory (SRL) 

The current efforts at the NPS SRL follows the same basic approach as many 

other robotics efforts throughout academia. The basic methodology consists of four 

phases: (1) design and build a manipulator, (2) attach it to a base spacecraft simulator,  

(3) characterize its kinematic and dynamic behavior, and (4) control the manipulator to 

perform a value-added task. The first SRL multi-link manipulator program was a four-

link manipulator constructed in 2012 (Figure 8).   
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Figure 8.  The First SRL Multi-link Manipulator. Source: [20]. 

In this same year, the 16 m2 polished granite monolith was installed in the 

laboratory, providing additional maneuver space over the legacy 9 m2 monolith. The 

table-top method experimentation allows for a spacecraft/manipulator system that 

operates in three degrees of freedom (translation in the x and y directions of the Cartesian 

plane and rotation about the z axis, which is perpendicular to the table. A four-joint 

robotic manipulator system is desirable because it offers four degrees of freedom 

(4DOF). Despite the dynamic coupling, a 4DOF manipulator operating in a 3DOF 

experimental environment enables the base to remain stationary under the right 

circumstances. Such kinematic redundancy is convenient if, for example, the host 

spacecraft has a camera that needs to observe the end effector working. 

The first-generation manipulator system was designed to attach to the lab’s third 

generator Floating Spacecraft Simulator (FSS), the tall rectangular prism in Figure 8. As 

in nearly all manipulators, the links depended upon the base spacecraft for power and 

computation, requiring electrical wiring to be strung throughout the link. Once 

constructed, the manipulator could not be reconfigured, limiting the number and type of 

table-top experimental problems to which the system could be applied. 

The solution to this limitation was to design and build a modular link that 

contained all of the power, hardware, and software within its own structure (Figure 9). 
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These independent links are compatible with the new fourth-generation FSS (Figure 10), 

which was designed to allow manipulator mountings on each of its four faces. In the 

current configuration, the links depend upon the FSS only for the compressed air that 

flows through a series of detachable air hoses to the link air pads.  

 

Figure 9.  Complete Link Assembly. Source: NPS SRL. 

Four modular, independent links can be reconfigured and mounted on the FSS in 

any number of ways. For example, all four links could be attached into one serial 

manipulator as in the current investigation, but two manipulators could just as easily be 

affixed to two adjacent (or two opposite) sides for experimentation with two cooperative 

(or two independent) manipulators such as EFFORTS-2, ARFR, the Massachusetts 

Institute of Technology’s (MIT) Experimental Free-Flying Robot [21], and the Tsinghua 

University’s Humanoid Free-flying Space Robot [22]. The two-armed manipulators 

provide examples of systems designed to have cooperative manipulators, but like their 

single manipulator counterparts, they lack the ability to be reconfigured. The cooperative 

control of both manipulators presents a challenge beyond the scope of this thesis, but is 

recommended as a future area of investigation.  
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Figure 10.  The Floating Spacecraft Simulator (Without Reaction Wheel).  
Source: NPS SRL. 

The kinematics and dynamics of each configuration and the on-board control 

algorithms would change for different scenarios, but the hardware and the software to 

calibrate the kinematics and dynamics would remain largely the same. An entirely new 

manipulator would not need to be built for each series of experiments, which opens the 

possibility of multiple investigations without the time-consuming and expensive process 

of designing, building, testing, and configuring a new robotic manipulator every time the 

mission set changes. To that end, the first link of the SRL’s second-generation spacecraft 

manipulator was designed and built by Dr. Markus Wilde and Mr. Daniel Alvarez from 

March 2013 to October 2014 [20]. At that time, the modular manipulator design (named 

the Modular Arm Robotic Manipulator, or MARSMAN) was believed by the researchers 

to be the first of its kind in the field. Dr. Josep Virgili-Llop, a National Research Council 

post-doctoral fellow at the NPS NRL, and the author continued work on the project 

beginning in June 2014.  

C. RESEARCH OBJECTIVES 

The primary purpose of the investigation was to achieve table-top 

experimentation of a workable, modular, four-link, single manipulator system and to 

calibrate the systems kinematics and dynamics. Although the temptation for continued 
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design improvement was ever present, investigations into modified structural concepts 

was limited. Several significant hardware modifications were made, however, and these 

are explained in Chapter II. In the process, a 6DOF kinematics and dynamics calibration 

model was developed and validated (in 3DOF) through experimentation. 

The 4-link MARSMAN configuration is believed to be the first multi-link 

manipulator composed of modular, reconfigurable links. It is also significant to note that 

the mass ratio of the base to the manipulator (approximately 1.3), and the inertia ratio of 

base to the manipulator (approximately 0.02 when the manipulator is fully extended) are 

significantly smaller than any of the systems previously discussed. These small numbers 

are indicative of a system with significant dynamic coupling and highly non-linear 

dynamics. 

An open-source software model named the Spacecraft Robotics Toolkit (SPART) 

was presented at the 6th International Conference on Astrodynamics Tools and 

Techniques (ICATT) [23], and in an effort to reduce the duplication of efforts among 

roboticists worldwide, the software was made publicly available via the GitHub open-

source, collaborative development environment [24]. To the knowledge of the author, 

SPART is the first open-source kinematics and dynamics simulator for spacecraft 

robotics.  

With the four-link manipulator complete, the investigation is ready to proceed in 

any number of directions, including the control of the robotic manipulator, the integration 

of an end effector, or the use of the manipulator in capture and berthing scenarios. A 

more detailed discussion on the course of future work is offered in Chapter VI: 

Conclusion.  
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II. DESIGN EVOLUTION 

This chapter recounts the evolution of the manipulator link design, highlighting 

the hardware and software changes between the first and subsequent manipulator links. 

While Link 1 was functional, there were multiple areas ripe for improvement. These 

design upgrades will be discussed in further detail, but prior to experimentation, Link 1 

was upgraded with the same components as Links 2–4. Thus, all four links follow the 

same design. 

A. REQUIREMENTS 

The original design requirements were found to adequately meet the experimental 

goals of the project but were modified to employ Wi-Fi and commercial-off-the-shelf 

(COTS) components. The design requirements thus remain the same as those outlined by 

Wilde and Alvarez [20] with one modification and one addition: 

 Easily interchangeable modular design 

 No wires routed through joints 

 MODIFIED: Wireless data relay to base robotic vehicle via Wi-Fi 

 On-board power supply 

 On-board servomotor and encoder 

 On-board torque sensor 

 Highest accuracy components for reasonable cost and mass 

 ADDED: Use all commercial-off-the-shelf (COTS) components 

B. MODIFIED DESIGN 

1. Retained Hardware  

The majority of the hardware components of the Link 1 were retained for 

subsequent links. These components include the 3D-printed link structure, the Harmonic 

Drive FHA-8C-30-12S17b-E servomotor and the Harmonic Drive DEP-090-09 
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servomotor driver [25], the FUTEK TFF400 torque sensor [26], the Inspired Energy 

NH254 lithium-ion battery [27], the Traco Power 75-2415WI V DC/DC converter [28].  

2. The Link Structure 

The structure of each manipulator link consists of five separate polycarbonate 

pieces designed in Siemens NX computer-aided design/computer-aided 

manufacturing/computer-aided engineering (CAD/CAM/CAE) software. Each piece was 

created in a part file format (.prt) and exported to the printer as a stereo lithography file 

(.stl). 

Lesson Learned 

While the NX software is very sophisticated, a freely available software package 

like the Windows 3D Builder application can be used to view and manipulate the 

.stl files. In this project, 3D Builder was used to create the link shoes (see Section 

II.3.e.). The default file format for items saved from 3D builder is the .3mf format, 

but objects can be saved as .stl files. 

The five pieces of the link are the main link structure, the outer plate, the motor 

carriage, the inner bracket, and the outer bracket. Figure 11 shows the pieces as they 

arrive from the 3D printer. Figure 12 shows the same pieces after the substrate has been 

removed. 
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Figure 11.  Five Pieces of the Main Link Structure with Substrate. 

 

Figure 12.  Five Pieces of the Main Link Structure without Substrate. 
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a. The FHA-8C-30-12S17b-E Servomotor and the DEP-090-09 
Servomotor Driver 

The FHA-8C-30-12S17b-E harmonic drive servomotor (Figure 13) is the on-

board actuator for each manipulator link. It responds to commands from the DEP-090-09 

servomotor driver (Figure 14)—a driver chosen specifically for its compatibility with the 

servomotor’s absolute encoder. The servomotor sends its position data back through the 

servomotor driver. The driver calculates velocity based upon the position data and notes 

the amount of applied current (a proxy for applied torque). The controller uses these 

kinematic data points for each link.   

 

Figure 13.  FHA-8C-30-12S17b-E Servomotor. 
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Figure 14.  DEP-090-09 Servomotor Driver. Source: [25]. 

The driver is programmed via the accompanying Copley Motion Explorer 2 

software produced by the Copley Controls company [29]. Driver settings are chosen 

through the graphic user interface and can be tested through an RS232 serial line 

connection between the driver and the programming computer. Once settings are 

satisfactory for the mission requirements, they can be saved and uploaded to the  

driver’s flash memory as a proprietary Copley Controls Axis (.ccx) file. For the .ccx  

file used in this project and the chosen parameter settings, see Appendix D: 

MARSMAN_Driver_Load.ccx. Table 1 lists size, weight, power, and cost characteristics 

of both the servomotor and the driver. 

Table 1.   Servomotor and Driver Characteristics. Sources: [20], [25], [26]. 

Hardware Dimensions Mass Input Voltage Input Current Cost 

Servomotor 50x49x48.5mm 0.5kg 24V DC 3A $2,500 

Driver 196x99x31mm 0.45kg 24V DC 10A $700 

 

Lesson Learned 

To maintain the memory of its current location when the primary power source is 

removed, the encoder requires input from an alternate power source. In the 

current design, this alternate power source is a 1.3V Daytona battery. This very 

important power source was not documented in the initial assembly literature. 
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b. The FUTEK TFF400 Torque Sensor 

The FUTEK TFF400 torque sensor (Figure 15) attaches to the servomotor and 

senses the amount of torque applied by the servomotor. 

 

Figure 15.  FUTEK TFF400 Torque Sensor, Isometric and Rear Views.  
Source: [26] 

As the motor applies torque to the Link body’s outer plate, the mechanical 

twisting experienced by the face of the torque sensor is converted into a voltage, which 

flows into the sensor’s Wheatstone bridge circuit at the +Excitation node (Figure 16). The 

current signal is read at the +Signal, -Signal, and –Excitation nodes and those currents 

pass to a load cell amplifier—a COTS integrated circuit that is a new element in the 

evolved design—and then to the Arduino Due microprocessor for processing and 

transmission. It should be noted that a low-level torque will produce a reading that is 

difficult to distinguish from the sensor noise. Table 2 lists size, weight, power, and cost 

characteristics of the torque sensor. 
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Figure 16.  Wiring Diagram for FUTEK's TFF400 Torque Sensor. Source: [30].  

Table 2.   Torque Sensor Characteristics. Sources: [4], [20]. 

Hardware Dimensions Mass Output Voltage Resolution Cost 

Torque Sensor 50.8 x 50.2mm 0.25kg 3mv/V 0.003Nm $1,040 

 

c. The Inspired Energy NH2054HD31 Lithium-Ion Battery 

The main power source for each link is the Inspired Energy NH2054HD31 

(Figure 17). This rechargeable, lithium-ion battery has a nominal voltage and current life 

of 14.4V/6.2Ah—an extremely capable battery for this experimentation. The battery and 

its mounting remained the same from the initial design, but the manner in which the 

voltage was routed changed to provide the necessary 24V to the driver and servomotor 

and the necessary 5V to the Arduino. 
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Figure 17.  The Inspired Energy NH2054 Li-Ion Battery. Source: [27]. 

Lesson Learned 

The manufacturer recommends an input voltage for the Arduino Due 

microprocessor of 7-12V with 6V and 16V being the absolute upper and lower 

bounds [31]. Ostensibly, the Arduino Due seems compatible with the 

NH2054HD31. However, the NH2054HD31 specification sheet notes that the 

battery can charge up to a maximum of 16.8V—a voltage that will melt the Due’s 

onboard voltage converter [27]. Temporary solutions included using slightly 

discharged batteries and utilizing an auxiliary 9V battery. Ultimately, a voltage 

regulator was installed between the main power source and the Arduino Due. The 

discharge curve for this battery is shown in Figure 18. 
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Figure 18.  Discharge Curve of 14.4V Li-Ion Battery. Source: [27] 

d. The Traco Power 75-2415WI V DC/DC Converter 

The Traco Power 75-2415WI V DC/DC converter takes the nominal 14.4V from 

the main power source and converts it to the 24V needed to power the servomotor driver 

and the servomotor, which are connected in series. It does not provide any power to the 

torque sensor as indicated in Link 1’s initial design electrical power architecture [20]. 
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Figure 19.  Traco Power 75-2415WI DC/DC Converter. Source: [28]. 

e. The Arduino Due Microprocessor 

The Arduino Due is a hobby-grade microprocessor board that takes advantage of 

the C programming language and Arduino’s own Integrated Development Environment 

(IDE) (Figure 20). It is capable of reading the analog torque sensor output signals and 

converting them to digital signals, which are then passed through a compatible piece of 

communications hardware. In the initial design, a compatible XBee shield was mated 

with the Arduino Due to pass position, velocity, and torque data. In the evolved design, 

the Arduino Wi-Fi shield replaced the XBee shield. The Arduino nominally runs on 3.3V 

of power but can accept recommended input voltages between 7-12V [31].  
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Figure 20.  Arduino Due Microcontroller. Source: [31]. 

f. The LinkSprite RS232 Shield and Serial Connection Hardware 

The LinkSprite RS232 shield is an Arduino-compatible shield that allows the 

Arduino Due to transmit and receive data to/from the servomotor driver via serial cable 

(Figure 21). 

 

Figure 21.  LinkSprite RS232 Shield. Source: [32]. 
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g. The Dantona 3.6V Auxiliary Battery 

This Dantona 3.6 battery (Figure 22) provides a bias voltage to the motor encoder 

when the primary power source, the 14.4V battery, is removed. Without a power supply, 

the absolute encoder will not retain knowledge of its position. 

 

Figure 22.  Dantona 3.6V Battery. 

h. Air Delivery System Components 

The FSS houses a tank of compressed air, which flows to each of the links via 

0.125″ plastic tubing. In keeping with the modular design intent, each link has 

independent tubing that attaches to the adjacent links via interlocking tubing connectors. 

A T-splitter allows for air flow to the air bearing itself which connects to the tube via a 

brass pipe fitting. The bearing is made of a porous type of carbon that allows the 

compressed air to flow through it. An adjustable threaded ball stud attaches to the bottom 

of the main link structure and fits within the socket of the bearing. A 3-D printed cap 

designed and printed in-house keeps the ball joint seated in the bearing. Figure 23 shows 

these parts. 
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Figure 23.  Air Delivery System Components. 

3. Hardware Upgrades 

With the goals of maximizing COTS equipment to decrease link assembly time, 

ensure repeatable results, and improve the resolution of the signal reading from the torque 

sensor, multiple significant hardware changes were implemented. First, the custom 

circuitry implemented in the original link was replaced with a commercial-off-the-shelf 

(COTS) load cell amplifier. The removal of the custom circuitry necessitated the 

installation of a voltage regulator between the DC/DC converter and the Arduino 

package. Second, the XBee radio transmitter was replaced with an Arduino Wi-Fi shield 

that was compatible with the Arduino Due board and the originally-used RS232 interface 

board. Third, the custom serial cable connecting the servomotor driver to the RS232 

shield was replaced with functionally identical COTS pieces. Finally, several subtle 

design improvements were incorporated into the design. 

a. The SparkFun Load Cell Amplifier-HX711  

To classify the dynamics of the robotic manipulator, information on applied 

torque is essential. The previously-discussed FUTEK torque sensor is responsible for 

measuring the torques applied by the motor, but the mechanism by which that data is 



 28

passed from the torque sensor (an analog signal from a piece of hardware) to analyzable, 

digital data is an analog-to-digital converter (ADC). In this case, the links employ a 

Sparkfun load cell amplifier. The SparkFun Load Cell Amplifier-HX711 is shown in 

(Figure 24).  

The crucial component of the load cell amplifier is the HX711 integrated circuit, a 

chip specifically designed to read a signal from a load cell (i.e. the torque sensor) at high 

precision. An open-source header file (HX711.h) and a complimentary C++ source code 

file (HX711.cpp) were available from SparkFun and were incorporated into the final 

Arduino code (See Appendix A: SparkFun HX711 Load Cell Amplifier Open-source 

Header File and Appendix B: SparkFun HX711 Load Cell Amplifier Open-source C++ 

Source Code File). 

 

Figure 24.  Both sides of the SparkFun Load Cell Amplifier. Source: [33]. 

To define “high precision,” it is necessary to investigate the torque sensor 

specifications, specifically how it responds to varying voltages. According to its 

specifications, the torque sensor has a rated output of 2mV/V when the torque input is at 

a maximum (400 in-oz or approximately 2.82 Nm) [26]. With the 15V excitation to the 

torque sensor from the DC/DC converter in the original design, the voltage difference 

between the terminals of the torque sensor was found to vary by a very small amount, 

only  30mV [20]. The intent of the custom circuit board in that design was to boost the 

strength of the torque sensor output, ideally to the 3.3V accepted by the Arduino’s analog 

input port [20]. The Arduino itself can only serve as a 10-bit analog-to-digital converter 

(ADC). Thus, each torque sensor reading can be represented by one of ten integers from 
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zero to 210 (or 1,024). While this method was workable, it only provided a best-case 

resolution of 103.3V 2 3.2mV , which is a poor resolution in relation to the  30mV 

measured variation. Implementing a COTS load cell amplifier eliminated the need for 

custom parts while allowing for greater resolution of the torque signal. 

The Spark Fun load cell amplifier uses the HX711 24-bit analog-to-digital 

converter (ADC) to transform the torque sensor’s analog electrical signal output into a 

digital signal that can be processed by the Arduino stack and analyzed within 

Simulink/MATLAB. Since the HX711 has a capacity of 24 bits, it can represent 224 (or 

16,777,216) integers. The nominal middle of the HX711’s range is 8,388,608. With zero 

load the torque sensor read in the range of 8,374,000 with fluctuations due to sensor 

noises—a reading reasonably close to the nominal middle. With 24 bits, the best-case 

resolution becomes 24 43.3V 2 1.97 10 mV  , which is a vast improvement over using 

the Arduino’s ADC.  

The second step in the calibration of the data was to calculate the analog input to 

the torque sensor. With the Arduino putting out 5V, the analog voltage leaving the 

HX711 (pin 3, Analog Voltage Drain or “AVDD”), can be calculated via the equation 

provided in the system diagram, Equation 1. 

 

( 1 2)

1

VBG R R
AVDD

R




 (1) 
 

In the above equation, the bandgap voltage (VBG) is the reference bypass analog 

output voltage (pin 6), a fixed value of 1.25V. R1 and R2 are the resistor values within 

the circuit, 8.2 k  and 20 k , respectively [34]. Note that the R1 and R2 values listed in 

the product diagram are reversed—a mistake that caused some confusion during initial 

measurements. When calculated as listed in the diagram, the analog power supply is 

found to be 1.78V—outside the nominal range of the HX711 (2.2 to ~5.5V). The voltage 

was measured at the input to the torque sensor and found by voltmeter to be 4.33V, very 

close to the mathematically predicted AVDD of 4.30V when R1= 8.2 k  and R2=20 k . 
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On the HX711, Channel A can be programmed with a gain of 128 or 64 [34]. The 

higher gain value was chosen and implemented via the Arduino code to allow for a 

higher resolution in the sensor output. The system specifications state that a gain of 128 

and an AVDD of 5V, the corresponding voltage output is expected to be within the range 

of +-20mV [34].  In the case of the torque sensor, the AVDD value is less than 5V, so the 

actual range can be calculated by Equation 2 to be  17mV. 

 

Nominal Range Actual Range

Nominal AVDD Actual AVDD


  (2) 
 

Finally, the torque sensor itself has a calibrated output of 1.9873mV/V at 400 in-

oz (2.8246Nm). With 4.3V actually applied to the sensor, the torque constant ( )k  as a 

function of voltage can be calculated. By Equation 3, every mV applied results in .33Nm 

of torque. This mathematical model was implemented in the Arduino code. The results of 

the code were verified by measuring the applied torque with an analog torque watch and 

the voltage output with a voltmeter. 

 

2.8246
.33

1.9873 4.3

Nm
k Nm mV

Nm mV V
 

    (3) 
 

b. The Arduino Wi-Fi Shield 

The Arduino Wi-Fi shield replaced the Xbee wireless communication shield from 

the original design for a number of reasons. The Xbee shield was capable of adequate 

transmission rates and ranges for the application, but it depended upon the Zigbee 

protocol, a more obscure cousin of Wi-Fi. Since the FSS and the VICON system use  

Wi-Fi, an Arduino-compatible Wi-Fi shield seemed like the obvious choice for 

implementation although Bluetooth was briefly considered. Second, communication with 

the on-board XBee required attaching an XBee transmitter to the USB port of a command 

laptop. A Wi-Fi shield is capable of interfacing directly with the command laptop’s 

organic Wi-Fi capability, and although an external router was used in this thesis, a more 
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capable microprocessor (for example, a Raspberry Pi) could be used to create an ad hoc 

Wi-Fi network. Finally, due to a lack of on-hand supplies and the discontinuance of the 

Xbee shield, determining a replacement became necessary. In an ironical twist, the 

Arduino Wi-Fi shield that was chose as the successor to the Xbee shield was itself 

discontinued by Arduino during the evolutionary design. A top view of the Arduino Wi-

Fi shield is shown in Figure 25. 

 

Figure 25.  Arduino Wi-Fi Shield. Source: [35]. 

The final limitation of the Arduino Wi-Fi shield is that it is no longer being 

manufactured; Arduino has discontinued the product line and is no longer updating the 

Wi-Fi Shield webpage. Thus, as efforts were being made to integrate the shield into the 

existing configuration, the hardware itself was already obsolete. Future work must 

explore the integration of a replacement for Arduino Wi-Fi shield, such as the Raspberry 

Pi microcontroller with Wi-Fi dongle (more on that in Chapter VI). 
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c. The RS232 Shield and Serial Cable Connection 

The RS232 shield requires a gender changer to connect the serial cable to the 

servomotor. Both ends of the serial cable are capped with RJ12 connectors. The 

introduction of the COTS gender changer and a new serial cable that follows the U.S. 

Bell System coloring scheme eliminated the need for tedious customization of a serial 

connector and the use of a null modem. 

Lesson Learned 

Not all serial cables are wired the same. The cables used in this project use the 

U.S. Bell System Coloring scheme. As viewed from the front of the RJ12 

connector, the colors of the wires are (from left to right) white, black, red, green, 

yellow, blue. When both ends of the cable are placed side-by-side, they display the 

same pattern (the” standard” configuration). If the color patterns mirror one 

another (the “reversed” configuration), the cable still can be used, but a null 

modem needs to be inserted between the RJ12 connector and the RS232 port to 

flip the transmit and receive signals.  

d. Voltage Regulator 

To keep the battery’s output voltage in a safe operating range for the Arduino, a 

voltage regulator was installed to convert the 16.8V maximum voltage to a 5V input for 

the microprocessor (Figure 26). 
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Figure 26.  Voltage Regulator. Adapted from [36]. 

e. Miscellaneous Modifications and Improvements

In addition to the significant component changes, several more subtle changes 

were included in the design. Mounting hole placements were modified to better 

accommodate placement of the microcontroller, a Velcro strap was added to prevent 

rattling of the battery during testing, and bolt usage was standardized to the greatest 

extent possible. Apart from the bolts required to mount the torque sensor, all other bolts 

are button hexagonal head, 4mm diameter. 

Finally, a link with an attached air bearing presented a problem: the link could not 

stand because the air bearing was jutting out the bottom of the structure. Initially, 

cardboard boxes were used to prop up the completed links, but these were fairly unstable 

(and unsophisticated). To address that shortcoming, the freely available Microsoft 3D 

Builder application was used to model “shoes” for the links. The shoes (Figure 27) lift the 

link off of the table high enough so that the dangling air bearing does not touch. As a side 

note, the 3D Builder software was also useful for viewing the link components when 

licenses with the more advanced Computer Aided Drafting Software became 

problematic. 
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Figure 27.  “Shoe” Developed Using the Free Microsoft 3D Builder Application 
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III. ASSEMBLY DOCUMENTATION 

A. INTENT OF THE ASSEMBLY DOCUMENTATION SECTION 

The intent of this section is to document the assembly of a link to a sufficient 

degree that future researchers wishing to replicate the experimental campaign, evolve the 

present design, or develop an entirely different robotic manipulator design have a well-

documented, successful design from which to begin their work. Although assembly 

documentation exists prior to this, given the hardware upgrades, a newer, more thorough 

documentation is necessary. This documentation additionally includes thorough labeling 

of part names, wiring diagrams that will prevent future agonizing over pin-out schematics 

and hardware interfaces, an introduction to the driver programming software interface, 

and an in-depth discussion of assembly methodologies and lessons learned. In truth, no 

two links were constructed in exactly the same sequence. However, by the completion of 

Link 4, a best-practice approach was established. 

At the outset of the construction of each Link, the idea to transform the side walls 

of the link structure into slide-out walls resurfaced. Walls that could slide out would 

avoid the difficulties of fitting large hands in small places and trying to tighten nuts onto 

inconveniently located bolts. The sliding wall modification was never attempted for two 

reasons. First, in the interest of research focus, a time-consuming diversion into CAD 

modifications was not desirable. Second, and more importantly, it was desirable to keep 

all of the links as structurally similar as possible to simplify the initial assessment of the 

system kinematics and dynamics. It is possible that sliding walls would have diminished 

the rigid-body behavior of the manipulator link.  

Previous documentation of the link assembly favored the approach of first 

mounting the hardware to the structure and wiring throughout the process. I suggest that a 

simpler method is to complete all of the subsystem wiring first. Broadly, the manipulator 

link can be viewed as four subassemblies: the torque sensor/servomotor subassembly, the 

circuit board subassembly, the power subassembly, and the servomotor driver (which 
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simply mounts to the wall of the main link structure). Thus, the documentation of the 

assembly begins not with the link structure but with the preparatory component wiring. 

B. BUILDING A LINK 

1. The Servomotor Cable Connectors 

The servomotor has two wiring outputs, the motor leads (top cable in Figure 28) 

and the encoder cable (bottom cable in Figure 28). Neither of these two cables comes 

with a connector that is compatible with the servomotor driver. Figure 32 shows the 

motor with stock connectors; the motor leads connector is the white connector, and the 

encoder cable connector is the black connector. 

 

Figure 28.  Servomotor Cabling Schematic. Source: [25]. 
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Figure 29.  Servomotor with Stock Connectors. 

The motor leads are initially attached to the six-pin connector shown in Figure 33. 

The red, white, and black wires correspond to the power inputs for the three-phase motor 

(phases U, V, and W, respectively). At continuous operation, the driver provides 2.3A, 

2.4A, and 1.8A of current via those three lines (U, V, and W, respectively) [37]. Pin 4 

attaches to the green/yellow wire, which serves as the ground. The designation of the 

green/yellow wire as “PE” in Figure 30 stands for “Protective Earth,” a term used by the 

International Electrotechnical Commission [38]. 
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Figure 30.  Motor Lead Connector Layout (Units in mm). Source: [39]. 

The stock connector is removed and replaced with a 4-position J2 connector (that 

is, it connects to the J2 port on the servomotor driver). This connector, along with the 

servomotor encoder cable connector (discussed in the next section) comes in a connector 

kit available from Copley Controls Corporation (kit name: AEP-CK, AMP-CK, part 

number: 84-00147-000 Rev A). The new motor lead connector’s serial number and 

nomenclature are “57-00605-000: Plug, RoHS, Euro-Style, 4 position, 5.08 mm.”  The 

colored wires are attached to the new motor lead connector in accordance with Figure 31. 

 



 39

 

Figure 31.  Motor Cable Wiring with 4-Position J2 Connector. 

2. The Encoder Cable Connector 

The encoder cable connects to the motor driver and reads position data. From 

position data, velocity data is derived on-board the driver. The pinout of the stock 

connector and corresponding descriptions of the pins is shown in Figure 32. 
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Figure 32.  Pinout of Encoder Cable with Stock Connector. Source: [39]. 

The 20-pin J3 feedback connector (57-00608-000: Connector, RoHS, 20 position, 

Mini-D, solder cup) replaces the stock connector. The plastic shell (47-00130-000: 

Backshell, RoHS, plastic, 20 position, Mini-D) encases the new 20-pin connector. Figure 

33 shows a picture of the new connector pieces alongside the encoder cable.  
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Figure 33.  Replacement Connector Pieces Alongside the Encoder Cable. 

The pinout diagram for the 20-pin connector is shown in Figure 34. Notice that 

the brown and orange wires (the auxiliary battery negative and positive connections, 

respectively) are not connected to a pin. These wires attach to a separate power source, a 

3.6V Dantona battery, as shown in Figure 35. This 3.6 battery provides power to the 

motor encoder when the primary power source, the 14.4V battery, is removed. Because it 

is an absolute encoder, the encoder will not retain knowledge of its position without a 

power supply. 
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For color codes, reference Figure 32. Gold squares represent unused pins. 

Figure 34.  Pinout of Servomotor Encoder Cable with 20-Pin Connector.  

 

Figure 35.  Encoder Cable with 20-Pin Connector and Attached Battery. 

3. The Torque Sensor Wiring 

As discussed in the review of hardware, the FUTEK Model TFF400 torque sensor 

has a four-pin output receptacle. The mating connector for this receptacle, the 

FGG.0B.304.CLAD35 type connector, is not included as a component of the torque 

sensor but is purchased separately. Wires were soldered to the four-pin connectors, and 

the shell of the connector reassembled around the pins. The .CLAD35 connector has a red 
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dot which aligns with the torque sensor receptacle. The output wires were labeled 

(+EXEC, -EXEC, +SIG, -SIG) to avoid confusion during their connection to the load cell 

amplifier connections of the same names. Figure 36 shows the torque sensor with mated 

.CLAD35 connector. Although no standard wiring scheme was used from link to link, in 

the image below, white wires attach to the load cell amplifier, and the green wires will 

eventually connect to the Arduino assembly. 

Lesson Learned 

The red dot on the shell of the .CLAD35 connector swivels about the four-pin 

connector itself; it is not fixed to the four-pin connector. Thus, an alignment of the 

connector’s red dot with the torque sensor’s red dot does not necessarily mean 

that the intended wires are aligned with the intended receptacles. Extra care 

should be taken to ensure that the output of each wire is known so that it can be 

connected to the appropriate position on the load cell amplifier. In one instance 

where the lead wires were mislabeled coming out of the receptacle, no negative 

effects on the hardware were noted.  

 

Figure 36.  Torque Sensor Wired to the Load Cell Amplifier. 
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4. Battery Connector and DC/DC Converter 

From the nominally 14.4V Li-ion battery, power flows according to the block 

diagram in Figure 37. The DC/DC converter connects to the power and ground outputs of 

the battery terminal. The driver and motor require 24V, so the voltage is up-converted 

and passed to the driver’s J1 connection portal via a three-pin connector similar to the 

one used on the motor cable wiring (from the same connector kit, part 57-00604-000: 

Plug, RoHS, Euro-Style, 3 position, 5.08 mm). Note that only the voltage and ground 

pins are used in the three-pin connector.  

While the driver/motor assembly requires 24V, the voltage going into the Arduino 

assembly needs down-converted. This is managed via a Low Dropout regulator (LDO) 

that outputs the necessary 5V. The LDO’s input of 14.4V (nominal) comes directly from 

the battery. Figure 37 shows a block diagram of the electrical power architecture.  

DC/DC 
Converter

Driver/Motor 
Subsystem

Voltage 
Regulator

Microprocessor /
Wi-Fi 

Subsystem5 V
.8 A (max)
4 W (max)

24 V
1.7 A

40.8 W
3.3 A (max)

79.2 W (max)

14 V
2.9 A

40.8 W
5.7 A (max)

79.2 W (max)

14 V
.3 A (max)

4.0 W (max)

14.4 V
3.2 A

44.8 W
5.8 A (max)

83.2 W (max)

Battery

 

Figure 37.  Block Diagram of the Electrical Power Architecture. 

5. The Arduino Subassembly 

The Arduino subassembly consists of the Arduino Due microcontroller, the 

Arduino Wi-Fi Shield, and the RS232 shield. The Due uses a universal asynchronous 

receiver/transmitter (UART) microchip to transmit data via the transistor-transistor logic 

(TTL) method, which for the Due remains at a voltage level between zero and 5V [40]. 

The RS232 shield uses the power from the Due and converts the data from TTL to the 
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Recommended Standard 232 (RS232) format, which is compatible with the driver. From 

a hardware perspective, the components are simply stacked on top of one another: the 

Wi-Fi shield plugs into the Due, and the RS232 shield plugs into the Wi-Fi shield. The 

RS232 shield connects to the motor driver via a serial cable. As noted previously, the 

proper serial cable (i.e., a serial cable that uses the standard U.S. Bell System coloring 

scheme) eliminates the need for a null modem but requires a gender changer to align the 

pins. Jumper wires are used to connect the Due’s transmit and receive ports to the 

RS232’s transmit and receive ports. Given the capability of the Due, different 

transmit/receive port combinations are possible.  

After examining the Due pinout diagram and experimenting with different 

combinations, two successful combinations are offered here. Thus, even with a faulty 

board or inexplicable malfunction, one combination or the other should allow for a viable 

solution. In the first successful case, the Due’s port 16 (Tx) is connected to the RS232 

shield’s digital port 3, and the Due’s port 17 (Rx) is connected to the RS232 shield’s 

digital port 2. This configuration works when the jumper connectors on the RS232 shield 

connect J2 and J3 in the D2 row and J1 and J2 in the D3 row. In the second case, the 

Due’s ports 17 (Rx) and 16 (Tx) are connected to the RS232 shield’s digital ports 5 and 

6, respectively. This configuration requires that the jumper connectors on the RS232 

shield connect J2 and J3 in the D5 row and J1 and J2 in the D6 row. The connection of 

the Arduino assembly to its power supply and to the load cell amplifier is explained in 

section 5 with the discussion of the Arduino subassembly mounting. 

6. Mounting the Components to the Structure 

With the majority of the wiring completed, the subassemblies can be joined to the 

outer structure. Mounting the parts may seem a straightforward task, but the order in 

which they are mounted is important. Through the experience of building multiple links, 

an order for assembling the components was decided upon that allowed for necessary 

component testing while avoiding self-interference. It is, for example, not advisable to 

mount the Arduino assembly until near the end of the assembly because trouble-shooting 

the power subsystem may be necessary, and accessing the DC/DC converter or battery 
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mount is difficult if the Arduino assembly is mounted. The procedure outlined below 

incorporates similar lessons learned. 

First, the torque sensor is screwed to the motor carriage with a piece of rubber 

matting in between them. The rubber matting was a carry-over from the initial design and 

is not strictly necessary for the link function. The rubber does, however, help to seat the 

torque sensor snugly on the motor carriage and may possibly reduce the transfer of the 

motor’s vibration to the torque sensor (Figure 38). The pin connector with completed 

wiring (including its attachment to the load cell amplifier) is inserted. 

 

Figure 38.  Torque Sensor Mounted on the Motor Carriage. 

Next, the servomotor is mounted to the outer plate (Figure 39). The servomotor 

cables will not run through the slot in the outer plate but through the slot in the link 

structure.  
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Figure 39.  Servomotor Mounted to Outer Plate 

The motor carriage with affixed torque sensor is slid down over the servomotor 

itself, fitting snugly in place (Figure 40).  

 

Figure 40.  Mated Torque Sensor and Servomotor 

Two circular bearings (Figure 41) are added, one to the axel on the bottom of the 

outer plate and a second on the axel of the outer bracket. The inner bracket is screwed to 
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the top of the torque sensor. Once affixed to the outer plate, the outer bracket’s bearing 

fits inside of the circular hole on the top of the inner bracket. Figure 42 shows the 

completed joint assembly. The cables are run through the opening in the link structure, 

and the inner bracket is bolted to the link structure. 

 

Figure 41.  Circular Bearings for Use on Outer Plate and Outer Bracket. 

 

Figure 42.  The Completed Joint Assembly. 

With the joint assembly complete, the servomotor driver can be bolted to the 

sidewall of the link structure. It will be programmed when the power supply is 
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operational. The battery connector is bolted to the floor of the link structure, and the 

DC/DC converter is mounted to the link structure’s wall opposite the servomotor driver. 

The three-pin power connector from the DC/DC converter is connected to the J1 

receptacle of the servomotor driver, the motor cable’s four-position connector is plugged 

into the driver’s J2 receptacle, and the servomotor encoder with 20-position connector is 

plugged into the driver’s J3 receptacle. The J5 receptacle is used for the connection of the 

serial cable to the RS232 shield. The J4 and J6 ports are not currently used. Figure 43 

shows a diagram of the driver connection ports, and Figure 44 shows the link assembly as 

it looks at this stage in the construction.  
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Figure 43.  Diagram of the Harmonic Drive Connection Ports. Source: [41]. 
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Figure 44.  Link with Joint Assembly, Mounted Servomotor Driver  
and DC/DC Converter 

At this stage, the main power supply (the 14.4V Li-ion battery) can be inserted 

and the servomotor driver programmed. If the wiring is done correctly, the power 

indicator light (the AMP light) on top of the driver will light solid green. Attaching a 

serial cable between the J5 (RS232) port on the driver and a computer with the Copley 

Motion Explorer 2 (CME2) software allows for configuring the motor driver. Figure 45 

shows the CME2 graphic user interface (GUI) upon initialization of the software. 

As mentioned in the hardware section, the required configuration file is a Copley 

Controls Axis (.ccx) file. Through the GUI the user can manipulate system parameters 

and create a unique ccx file, which is saved using the yellow floppy disk icon near the top 

of the GUI window. For the ccx file used in this project and the chosen parameter 

settings, see Appendix D: MARSMAN_Driver_Load.ccx. This particular configuration is 

based upon the driver’s default configuration but contains adjusted controller gains for 

stiffer joint resistance. To load this file upon first use, the user selects AmplifierBasic 

SetupLoad ccx File. Changes to the ccx file are saved using the floppy disk icon at the 
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top of the GUI window. The ccx File is saved to the driver’s internal flash memory using 

the blue integrated circuit icon near the top center of the GUI window. 

 

Figure 45.  Copley Motion Explorer 2 (CME2) Graphic User Interface 
upon Initialization. 

Most system troubleshooting was done within the Control Panel window, which  

is accessed by clicking on the second icon from the left in the main GUI’s ribbon bar.  

To set the motor counter’s zero position, the motor first needs to be disabled. Disabling 

the motor removes the applied voltage, which allows the user to turn the joint assembly 

by hand (Figure 46). This configuration takes the zero position to be when the link  

is aligned with the joint, or in other words, the link rotates about the joint from 

approximately - 2 to + 2 . 
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Figure 46.  CME2 Control Panel with Disabled Motor Control. 

Faults are most likely to occur if the motor is commanded to a position that it is 

not physically able to reach (i.e., it thinks it needs to rotate further, but the wall of the link 

structure is blocking the joint from turning). To prevent current overload, the controller 

will implement its safety mechanism (a “Latched Fault”), which will prevent the 

hardware from being damaged. If this happens, the motor will be unresponsive, and the 

AMP light on top of the driver will blink red. When a link is attached to the CME2 

software, the “Clear Faults” button will reset the driver. During experimentation it is 

cumbersome to reattach the driver to the CME2 software, so removing and reinserting the 

main battery will hard boot the driver. The removal of the main battery allows for manual 

repositioning of the joint. 

With faults cleared, the software can be enabled by clicking the “Enable” button. 

All indicator “lights” in the Control Panel window will show green (Figure 47). Clicking 

the “Enable Jog” box allows the user to send impulse commands to the motor in the 

positive or negative direction to ensure that the motor is responding to the driver 

commands.  
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Figure 47.  CME2 Control Panel, Faults Cleared, Jog Enabled. 

With the battery connector, driver, and DC/DC converter mounted, only the 

mounting of the Arduino assembly remains. The Arduino assembly is mounted opposite 

the battery and in the current configuration, provides just enough clearance for the battery 

to seat snugly into the battery connector. The power and ground wires run from the 

battery connector to the bottom of the DC/DC converter. The power and ground wires to 

the Arduino assembly attach directly to this connection (nominally 14.4V). As mentioned 

in the hardware discussion, the Arduino assembly can accept 14.4V directly, but the Li-

ion battery can hold a voltage of up to 16.8V, which will destroy the Due’s on-board 

voltage regulator. To prevent this from happening, a separate voltage regulator was 

installed that down-converts the battery’s output from 14.4V to 5V. The 5V output of the 

regulator is wired to the “+5V” pin on the RS232 shield. A ground wire connects the 

“GND” pin directly to the ground of the DC/DC converter. 

The load cell amplifier jumper wires are plugged into the Arduino assembly. The 

load cell amplifier’s “2.7-5V” pin connects to the RS232 shield’s “+3.3V” output pin. 

The load cell amplifier’s data (“DAT”) pin connects to the digital input #8 pin on the 

RS232 shield. The load cell amplifier’s clock pin (“CLK”) connects to the RS232’s 
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shield’s #9 digital input pin. A ground-to-ground connection completes the circuit. The 

RS232 shield is itself connected to the servomotor driver via a serial connector and cable 

plugged into the driver’s J5 (RS232) port.  

At this point in the construction, the hardware for the power and data architectures 

are in place. A schematic of the power architecture is shown in Figure 48, and the data 

architecture schematic is shown in Figure 49. The data architecture will be discussed 

more thoroughly in Chapter IV. 

 

Figure 48.  Power Architecture Schematic 
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Figure 49.  Data Architecture Schematic 

The final step in the construction is the addition of the air bearing assembly. 

Three pieces of plastic tubing approximately a foot long are attached to the three ports on 

the plastic T-splitter. Tubing connectors are attached to each end, and the brass pipe 

fitting is attached to the downward-facing tube. The threaded end of the pipe fitting is 

wrapped in Teflon tape to ensure an air-tight seal and screwed into the bearing. The 

threaded ball stud is inserted first through the bearing cap before being attached to the 

bottom slot of the main link structure. While the ball stud may be positioned anywhere 

along the slot, in practice, it was positioned underneath the link center of mass. The air 

bearing and ball stud are saved until last because once added, the link can no longer stand 

on a flat surface. The H-bracket “shoe” was developed as a holder for the full link 

assembly. A view of the completely assembled link is shown in Figure 50. 



 57

 

Figure 50.  Complete Link Assembly. Source: NPS SRL. 

With all of the hardware in place and the driver configured, a more thorough look 

at the link operating concept and communications architecture are necessary. An 

understanding of these components will enable an understanding of the microcontroller 

code that was implemented via the Arduino Due. The code itself proved to be the most 

challenging aspect of making the link work successfully. Following a discussion of the 

Due’s code, an explanation of the kinematics and dynamics Simulink model will be 

necessary before discussing the kinematic and dynamic calibration of the manipulator.  
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IV. DATA ARCHITECTURE 

A. OVERVIEW 

This chapter explains the communications architecture of the system given its 

current capabilities. It outlines the concept of operations for the manipulator from a 

communications perspective, explains the roles of the on-board hardware and software, 

and discusses alternative methods of commanding the links. Finally, options for 

architecture improvements are discussed. 

B. CONCEPT OF OPERATIONS 

As in previous testing with one link, testing the four-link manipulator involved 

sending commands to the individual servomotor drivers from a laptop computer to the 

links’ on-board communications hardware. Although the capability of the FSS to 

autonomously control each link was later demonstrated, that capability was not used for 

the calibration process. VICON cameras tracked the motion of the system via reflective 

spheres attached to the base and the outermost link. Experimentation with the four-link 

manipulator proved the concept that each of the links could be commanded 

independently. The approach is conceptually simple (as shown in Figure 51), but proved 

challenging in its implementation. 
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Figure 51.  Diagram of the Experimental Setup. Adapted from [42]. 

Because neither the Arduino Wi-Fi shield nor the FSS’s onboard Wi-Fi hardware 

are capable of creating an ad hoc network, the communications architecture in its current 

configuration depends upon an external D-Link® router. The router serves as the hub for 

all information flow both to and from the manipulator links. With the current hardware, 

two methods of sending data to and receiving data from the links are possible. In the first 

method, which was used for the kinematic and dynamic calibration of the manipulator, 

commands are sent from a laptop to each of the links, and the data from each link is 

received by the laptop; the FSS neither sends nor receives data. In the second method, the 

commanding software is compiled and uploaded to the FSS’s onboard computer, and the 

FSS itself receives the telemetry and commands the links. Since the laptop control was 

the only method used in this investigation, it is the only one that will concern us here. 

C. DATA FLOW 

1. The D-Link Interface 

A discussion of the data flow necessarily begins with the router and its web-based 

interface. First, when the D-Link is powered on, it creates its own network. The network 
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is accessed by connecting to the in-house Wi-Fi network named “srl_dlink.”  The 

interface is accessed through a web browser at the following URL: http://192.168.0.1/.  

Lesson Learned 

Considerable confusion during experimentation resulted because the default 

network name and password for the router had never been changed. D-link 

routers are a fairly common piece of hardware, and there was another one in the 

building to which the SRL hardware was connecting The router’s name was 

reconfigured to “srl_dlink,” and the password remained blank for ease of access. 

Through the Due code, which is written in the C programming language, the Wi-

Fi shields on the links are instructed to join the SRL network (Figure 52). The router 

employs a Dynamic Host Configuration Protocol (DHCP). That is, when devices join the 

network, the router assigns each device an internet protocol (IP) address, which, in the 

default configuration, changes each time the device joins the network. To avoid manually 

changing the device IPs each time in both the Simulink model and the Due code, the 

router was configured to assign the same IPs to the same hardware, represented by a 

unique media access control (MAC) address, each time. Similarly, port numbers were 

hard-coded into the Due code to standardize the connection process. Port numbers are  

not necessary for the connection itself, but they are necessary to designate the destination 

of the datagram packet. For example, Link 1 connects to the FSS/Control Laptop  

and sends data/listens to port #25010; the MAC address of its Wi-Fi shield is 

0x78,0xc4,0x0e,0x01,0xc5,0xb1. The excerpt of the Arduino code below defines the 

network, the FSS IP and its listening port, the FSS ports, and the MAC addresses in 

reverse. 
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Figure 52.  Code Defining Network Parameters, Port Numbers, 
and MAC Addresses. 

A second aspect of the data transfer process that bears discussion is the message 

protocol itself. The system employs the User Datagram Protocol (UDP). Unlike its more 

reliable cousin, the Transmission Control Protocol (TCP), UDP sends datagrams blindly 

without knowing for certain that there is a device on the other end to receive it [43]. This 

setup allows for rapid messaging and simplifies the requirement to translate the data 

packets, but message information can be lost during transmission or arrive in a different 

order [43]. For this investigation, simplified data translation was a highly desirable 

characteristic, but as will be discussed in a later portion of this chapter, the UDP protocol 

led to data management challenges.  

2. The Driver Interface and the Arduino Due Code 

The Due’s software script initializes contact with the link’s motor via on-board 

code. As a serial interface, the RS232 cable connects the two pieces of hardware and 

enables communication by text. The initialization code sets the maximum acceleration 

and deceleration rates (5000 counts/sec2, an arbitrarily high number), sets the initial 
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velocity (zero counts/sec), enables the amplifier, and requests position and velocity data 

from the driver. Upon receipt of the velocity command from the Simulink model, the 

Arduino stack passes the command to the driver. The American Standard Code for 

information Interchange (ASCII) strings used to achieve this functionality are shown in 

Table 1. For a comprehensive guide to the driver’s ASCII interface and a list of available 

commands, see [25]. 

Table 3.   ASCII Strings for Due-to-Driver Communication. Source: [25]. 

Function ASCII String 

Set Acceleration s r0x36 

Set Deceleration s r0x37 

Set Initial Velocity s r0x2f 

Enable Amplifier s r0x24 

Request Position Data g r0x32 

Request Velocity Data g r0x18 

Request Current Data g r0x0c 

 

The driver communicates the command to the motor and requests position and 

velocity data. The motor sends position and velocity data back via the encoder cable. 

Meanwhile, the torque sensor is read back through the load cell amplifier. All of the data 

(position, velocity, and torque) is read synchronously by the Due’s script and routed back 

through the Wi-Fi shield, through the router, and to the UDP receive block in Simulink, 

which allows for analysis. Unit conversions take place within the Due script, an 

improvement to the previous system in which raw units from the driver (e.g., “counts”) 

were converted to more meaningful measurements (e.g., radians) via a separate  

Simulink model before analysis. For the complete Arduino code, see Appendix C: 

OnBoardLink.ino. 
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3. The Simulink Model 

a. The Send/Receive Switch 

The Simulink block diagram in Figure 53 shows the simple on/off switch used to 

command a single link. For the kinematic and dynamic calibration, constant positive or 

negative velocities were sent via Wi-Fi to the particular link. The predetermined port 

numbers and IP addresses were used. On the receive side, position, velocity, torque data, 

and a fourth quantity, the checksum term (discussed subsequently), return over the 

network. In the composite ground station file, four such switches were used, one to 

command each of the four links. 

 

Figure 53.  Send/Receive Switch for Link Control. 

b. The Data Processing Subsystem 

A breakout of the Data Processing Subsystem is given in Figure 54 and itself 

consists of two subsystems, the Checksum Subsystem and the Enabled Subsystem. The 

internals of the Checksum Subsystem and the Enabled Subsystem are shown in Figures 

55 and 56, respectively. The Data Processing Subsystem exists to receive the data from 

the links, verify the integrity of the data packets, and transform those data packets into a 

useful form for analysis.  
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Before transmission from the link, each data packet initially consists of position, 

velocity, and torque data. Because the data stream may be corrupted during transmission, 

however, the microprocessor code creates a pseudo-unique checksum term based on the 

numerical values of the position, velocity, and torque. These four terms, then, are 

transmitted inside of a single data packet, which the ground station receives. This data 

packet passes through the Checksum Subsystem (Figure 55). The purpose of the 

Checksum Subsystem is to verify that a complete and uncorrupted data packet has arrived 

from the Link. To accomplish this, it reverses the process used to create the checksum 

term. The first three pieces of information (position, velocity, and torque) are stripped 

away from the raw data stream, multiplied by one hundred, and added together. This sum 

is subtracted from the original checksum term and added to one hundred.  If all bits arrive 

uncorrupted, the final result of the additions and subtraction should be zero (to within a 

small tolerance).  

The output of the Checksum Subsystem controls the behavior of the Enabled 

Subsystem. If the result of the checksum calculation is non-zero, the Enabled Subsystem 

is disabled, preventing the corrupt data packet from passing through. If the result of the 

checksum calculation is zero, the Enabled Subsystem is enabled, allowing the data packet 

to pass through. Since it is highly unlikely that a corrupted data packet will result in a 

zero calculation, the checksum ensures that only valid data packets are included for 

analysis.  

 

Figure 54.  Breakout of the Data Processing Subsystem. 
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Figure 55.  Breakout of the Checksum Subsystem. 

 

Figure 56.  Breakout of the Enabled Subsystem. 

The need for the checksum became apparent during initial testing of the 

communications architecture when data packets were dropping or being received 

incorrectly. The limitations of UDP were manifesting themselves. During the data 

transfer testing phase, it was observed that the data sent from the Arduino (position, 

velocity, and torque) would be received into Simulink in that order. At random intervals, 

however, the order of the data received would swap, usually by one place. For example, 

the position-velocity-torque data stream might switch to a velocity-torque-position data 

stream. Further, data swaps were observed that involved two variables switching places, a 

seemingly random behavior that made plotting and analysis of the data extremely 

inconvenient if not outright impossible. An extensive debugging of the Arduino’s C code 

resulted in improved performance mainly through the manipulation of  driver read delays 

and an increased buffer size, but the interim solution was enabling the blocking 

functionality in the Simulink UDP receive block. 

The blocking functionality enables retention of data until a complete packet of 

new data is received. The maximum amount of time that Simulink will wait between 
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packets is a configurable parameter that was arbitrarily set at ten seconds. Thus, if 

Simulink did not receive a new complete data packet from the Arduino subsystem within 

ten seconds, the simulation would time-out. Enabling the blocking mitigated the data 

swapping problem but introduced the new problem of the simulation timing out. In 

several cases, data collects of significant length (on the order of minutes) could be 

achieved before the simulation timed out. The interim solution was finally replaced by a 

better-behaved solution, the implementation of the Checksum Subsystem that detects 

error packets and only enables complete packets to be passed through for analysis. With 

the implementation of the checksum, the data swapping and system time-outs 

disappeared, and data could be collected with confidence. 

c. The Capture Function 

After any residual motion damped out of the base-manipulator system, the 

positions of the joint motors ( iq ) as measured by the encoders were captured via 

Simulink’s capture function, which was also included in ground station workspace 

(Figure 57). Depressing the capture button in Simulink enables the trigger, momentarily 

turning the “0” at the top of the diagram into a “1” to inform the operator that the capture 

has been successful. The vector of joint positions was passed into MATLAB; multiple 

measurements built the initial vector into a matrix containing all measurements to be used 

for the kinematic calibration. The Simulink capture happened at the same time as the 

capture of the end effector and base-spacecraft state vectors via VICON. 

 

Figure 57.  Capture Function 
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4. The VICON Interface 

As it is used in the NPS SRL, the VICON system consists of ten infrared cameras, 

an independent server, and the proprietary software to operate the system. The motion 

capture cameras are depicted in the experimental setup shown in Figure 58. The array of 

cameras detect the light as it bounces off of a series of silver spherical markers, and this 

telemetry is sent to the main VICON computer via Ethernet cable where the inputs of the 

multiple cameras are correlated. 

 

Figure 58.  Experimental Setup Including VICON Cameras. Source: [44]. 



 69

 

Figure 59.  Silver Spheres Serve as Markers for VICON. Source: [44]. 

A screenshot of the VICON tracking software is shown in Figure 60 where the 

silver reflective spheres appear as gold balls. A reference frame is attached to the left-

most ball, which is attached to the end of Link 4. This ball represents the location of the 

notional end effector. As with the telemetry capture from the links, the telemetry capture 

from VICON is accomplished manually via a capture button and collected via a 

MATLAB script. The interface between the VICON system and MATLAB requires 

VICON’s proprietary Datastream SDK software to be in the MATLAB script’s path. This 

software is available at [45]. The MATLAB script that captures the data for the kinematic 

calibration, including the state vectors of the base spacecraft and the end effector, is 

included in Appendix E: Vicon_Calibrate.m. 
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Figure 60.  Screenshot of the VICON Tracking Software. 

5. Potential for an Ad Hoc Network 

Although this configuration proved adequate, its limitations were also apparent. 

First, the Arduino Due is not capable of creating an ad hoc Wi-Fi network. If it were, the 

microprocessor/Wi-Fi shield combination could serve as a router, and an external router 

would not be necessary. Such a configuration is desirable because it simplifies the 

hardware used in the data transmission architecture and creates a more realistic scenario; 

the FSS communicates with each link via a self-contained network. A more capable 

processor, such as a Raspberry Pi, would be capable of creating such an ad hoc Wi-Fi 

network and has the advantage of further simplifying the link hardware; a Raspberry Pi 

with Wi-Fi dongle can replace the whole Arduino Due, Arduino Wi-Fi shield, and the 

RS232 shield. 
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V. KINEMATICS AND DYNAMICS CALIBRATION 

A. GENERAL OVERVIEW 

To understand how the spacecraft/manipulator system will behave, its mechanics 

must be understood. The mechanics of a system consists of its kinematics and its 

dynamics. Broadly, kinematics is the study of the motion of an object without 

consideration of its causes. Dynamics is the study of the motion with consideration of its 

causes (i.e., forces and torques). This chapter addresses the kinematic characterization of 

the four-link manipulator/FSS system followed by the dynamic characterization. The 

mathematical underpinnings of the model are discussed in the context of their 

application; that is, the discussion follows the flow of the MATLAB code, the SPART 

model [24]. The portions of the SPART model relevant to this thesis are contained in 

(Appendices E–P). While the SPART model is deigned to work in for up to six degrees 

of freedom, the discussion of the application of the model in this section only concerns 

itself with the 3DOF observable in experimentation.  

A second function of the SPART model is to provide the calibration functionality. 

The calibration is done to refine the system parameters that are difficult to measure, a 

process that the subsequent chapter discusses in detail. The calibration scripts, one for the 

kinematic calibration and one for the dynamic calibration, allow for comparison of the 

initially estimated system parameters and the real-world observations. With accurate 

knowledge of the system parameters, the system can be more precisely controlled. 

B. KINEMATICS OVERVIEW   

1. Definition of Terms 

To characterize the kinematics of a unitary object, it is necessary to identify  

the position, orientation, linear velocity, and angular velocity of the object. The 

MARSMAN system, however, is not a unitary object, which significantly complicates  

the characterization of its kinematics. For the FSS with n link attachments, the 

characterization of the kinematics requires definition of the kinematic properties not only 

of the base, but also of each link and joint and ultimately the end effector. These 
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parameters are highly coupled and change at each time step in the mathematical 

propagation.  

The SPART model partly exists to model the system behavior (e.g., the positions 

of the links, joints, and end effector at a given time). It necessarily calculates the 

kinematic parameters first. This main script for kinematics is given in Appendix F: 

Kinematics_Serial.m. This script calls on two supporting functions. The script in 

Appendix G: DH_Rs.m calculate the rotation matrix R and the translation vector s based 

on the Denavit-Hartenberg (DH) parameters and joint variables ( mq ). The script in 

Appendix H: Skew_Sym.m converts the designated vector into the form of a skew 

symmetric matrix. 

2. The Base 

The base itself can be treated as a rigid, unitary object with 3DOF (translation in 

the x and y directions and rotation about the z axis). Its position relative to the reference 

frame is described in terms of a state vector ( 0q ), a 6x1 column matrix that contains 

information about the base’s position in terms of linear motion ( , ,x y z  components) and 

rotational motion ( , ,x y z   ); see Equation 4. Collectively, the angles , ,x y z   are 

referred to as the Euler angles.  
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    (4) 

 

Since the experiments occur on a flat table, the z component of the linear motion 

will always be zero: the MARSMAN cannot move up and down. Similarly, it can only 

rotate about the z axis, so the x and y components can be assumed to be zero. The 

velocity vector ( 0q ) and the acceleration vector ( 0q ) follow the same form as 0q  and are 
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simply the first and second derivatives of 0q . As mentioned, the number of degrees of 

freedom of the FSS is limited by the current experimental environment, but the 

simulation model could easily accommodate 6DOF data if the opportunity for more-than-

3DOF experiments arises. 

3. The Joints 

For characterizing the kinematics of an n-link manipulator arm, one must know 

the relative positions and velocities of each joint on the arm with respect to the base. The 

joint position vectors ( mq ) and the joint velocity vector ( mq ) are nx1 column vectors. For 

this experimental campaign, the VICON system measured the end effector and base 

positions and passed them to the MATLAB/Simulink environment via Wi-Fi. The 

servomotor driver provided telemetry (angular position and velocity) for each link.  

4. Rotation and Joint Transformation Matrices 

The Euler angles of the spacecraft base are used to create the 3x3 rotation matrix 

( )bR  that expresses the orientation of the base with respect to the inertial frame. This 

model arbitrarily employs the common 1–2–3 rotation sequence shown in Equation 5 

[46]. Other rotation sequences could just as readily be employed.  

 

cos( )cos( ) cos( )sin( ) cos( )sin( )sin( ) sin( )sin( ) cos( )cos( )sin( )

cos( )sin( ) cos( )cos( ) sin( )sin( )sin( ) cos( )sin( ) cos( )sin( )sin( )

sin( ) cos( )sin( ) co

y z x z z x y x z x z y

b y z x z x y z z x x y z

y y x

R

           
           
  

 
   

 s( )cos( )x y 

 
 
 
     (5) 

 

The rotation matrix only accounts for the rotational motion of the base. To 

account for both the rotational and translational motion, a transformation matrix is 

necessary. The transformation matrix of the base is of the general form shown in 

Equation 6 and includes the rotation matrix and a 3x1 translation vector r = [x; y; z] 

describing the base’s position with respect to the inertial frame.  
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Like the base, each of the joints also requires a transformation matrix to describe 

the motion of the respective joint. Whereas the transformation matrix of the base relates 

its position to the inertial frame, the transformation matrix of each joint relates its 

position to the position of the previous joint. The transformation matrices of Joints 2 

through n+1 (where n+1 is the end effector) follow the same pattern. Because Joint 1 is 

attached to the base, its motion is described based upon its relationship to the base. 

Equation 7 shows Joint 1’s transformation matrix, which remains constant throughout 

maneuvers. Joint 1 is an estimated 18.3cm from the center of mass (CoM) of the base in 

the x direction (the calibration process will help refine this estimate). The 3x3 identity 

matrix ( 31 ) occupying the top left of Equation 7 is indicative of Joint 1 sharing the same 

orientation as the base.  
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To obtain the transformation matrix of Joint 1 in the inertial frame (I), the 

matrices from Equations 6 and 7 are multiplied together (Equation 8). Calculation of the 

transformation matrices of subsequent links requires use of DH parameters. 

 1 1
I I b

J b JT T T   (8) 
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5. Denavit-Hartenberg (DH) Parameters 

Calculating the transformation matrices for the remaining joints (Joints 2 through 

n+1) requires recursive application of the DH parameters. The DH parameters are a 

convention used to conveniently define successive reference frames, each assigned to a 

joint of the manipulator [47]. By this method, any joint reference frame can be ultimately 

described in terms of the inertial reference frame. The symbolic representation of the 

parameters varies within literature; this thesis employs the symbols d, q, a,  . Table 2 

lists the parameters and a description of their function, while Figure 61 depicts the 

parameters visually.  

Table 4.   Denavit-Hartenberg Parameters. Adapted from [44]. 

Parameter Definition 

, 1i id   Translational distance between the iJ and 1iJ  frames along the îk axis 

, 1i iq   Angle of rotation from îi to 1îi  along îk  

, 1i ia   Distance along the common normal between îk and 1îk   

, 1i i   Angle of rotation from îk to 1îk  along 1îi   

 

Figure 61.  Visual Depiction of the Denavit-Hartenberg Parameters. Source: [44]. 

The generic form of the DH transformation matrix is given in Equation 9 [47]. 

Each joint requires its own DH transformation matrix. Since each joint is rigidly affixed 

to the previous link its parameters are dependent upon that link’s position at any step in 

the numerical simulation.    
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In the case of a 3DOF, planar manipulator, the generic form shown above 

simplifies greatly. First, the MARSMAN is unable to translate along the z axis, which 

makes 0d  throughout the simulation. Second, the z axes of all joints are parallel 

(pointing upward), so rotation about the x axis is never necessary when aligning reference 

frames. Thus, 0  throughout the simulation, and the DH matrix simplifies to the form 

shown in Equation 10.  
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With the DH matrix established, calculating the transformation matrices of Joints 

2–4 in the inertial reference frame is only a matter of matrix multiplication. However, 

because the DH parameters are updated whenever a joint moves, this multiplication 

operation must take place numerous times. Equation 11 provides the equations for the 

Joint 2–4 and the end effector transformation matrices. In the kinematic calibration 

process, the transformation matrix of the end effector EET  is the only portion that requires 

further manipulation. 
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6. Link Transformation Matrices 

Transformation matrices for the manipulator links are calculated much the same 

as the transformation matrices of the joints. The transformation matrix of Link 1 ( 1iJ
LiT ) 

resides in the reference frame of the i+1 joint [23]. The vector b is the vector from the 

center of mass of Link i to the i+1 joint and accounts for the translational motion of the 

link just as the vector r accounted for the translational motion of the spacecraft base in 

the base transformation matrix. Since the ith link rotates with the (i+1)th joint, the portion 

of the transformation matrix that describes the link’s rotation is simply a 3x3 identity 

matrix (Equation 12). To obtain the transformation matrix of a link in the inertial frame 

( )I
LiT , 1iJ

LiT from Equation 12 is multiplied by 1
I

JT   (Equation 13).  
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C. DYNAMICS OVERVIEW 

At this point in the mathematical model, all of the parameters necessary for the 

kinematic calibration are computed, and a discussion of the property known as “twist” is 

necessary. Broadly, the twist vector of a link ( it ) compacts the angular and linear 

velocities as shown in Equation 14 [48].  
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The model, Kinematic_Serial.m, continues by calculating the twist propagation 

matrices ( ijB and 0 )iB , the velocity transformation matrix 0( )P , and the twist propagation 
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vectors ( )ip . These parameters are important for the characterization of the system 

dynamics. The twist vector, then, follows the relationship given in Equation 15 [48]. 

 i ij j i it B t p q  
 (15) 

1. Twist Propagation Matrices ( ijB and 0iB ) 

The 6x6 twist propagation matrix ijB accounts for angular and linear velocities of 

pairs of joints by taking the positional difference ( )j ir r of successive joints and turning 

that vector into a 3x3 skew symmetric matrix jir  [48]. Similarly, the twist propagation 

matrix 0iB  accounts for the angular and linear velocities between the ith link and the base 

0( )ir r  or 0ir . Interestingly, the skew symmetric functionality is not built into MATLAB 

as an organic function, so the in Appendix H: SkewSym.m was again employed to 

convert the jir and 0ir  vectors into the necessary form. The form of ijB is shown in 

Equation 16 where 31 denotes a 3x3 identity matrix and 30 denotes a 3x3 zero matrix [48]. 

The form of 0iB is the same with the exception that 0ir  replaces jir .  

 

3 3

3

0
ij

ji

I
B

r I

 
  
   (16) 

2. Velocity Transformation Matrix 0( )P  and Twist Propagation Vector 

( )mp  

The velocity transformation matrix accounts for the twisting effects of the 

spacecraft base on the system dynamics. It is shown in Equation 17, “a 6x6 matrix that 

contains the base-spacecraft rotation matrix” in the inertial frame [48].  
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The twist propagation vectors account for the twisting effects of each joint on the 

system dynamics. An explanation of the twist propagation vector requires introduction of 

the , , ,i i ir l e and gi vectors. Figure 62 depicts these vectors pictorially. 

 

Figure 62.  Depiction of Dynamic Model Vectors: Source: [48]. 

Fortunately, these vectors do not require new calculations; they are made by 

parsing pieces from already existing transformation matrices. For example, ir is the first 

three terms of fourth column of the ith link transformation matrix (as seen previously) and 

accounts for the link’s translational motion in inertial space; in other words, ir  is the 

vector from the origin of the inertial frame to the center of mass of the ith link. The vector 

il is similar to ir but comes from the joint transformation matrix (instead of the link 

transformation matrix) in the inertial frame. It accounts for the joint’s translational 

motion in inertial space and represents the vector from the origin of the inertial frame to 

the origin of the ith joint reference frame. The vector e gives the orientation of the joint’s 

rotation axis (the first three rows of the third column of each joint transformation matrix). 

In the planar case, e is simply a unit vector indicating rotation about the z axis. Finally, 

the geometric vector gi is the difference between ir and il . Since the joints in this 

experiment are revolute, the magnitude of gi does not change. With these four vectors 
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defined, the manipulator twist propagation vector ( mp ), is calculated as shown in 

Equation 18 [48].  
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D. KINEMATIC CALIBRATION  

The explanation thus far has dealt with the mathematical manner in which the 

nominal kinematics of the system are calculated largely via Kinematic_Serial.m and its 

supporting functions. The kinematic calibration process is primarily concerned with using 

the model and the experimentally measured position of the end effector to refine the 

system parameters. To that end, the end effector was measured in a series of poses.  

With the four-link manipulator attached to the base spacecraft and floating on the 

monolith, the manipulator links were given a number of random commands (m). 

Following each command, the state of the end effector (xEE) was measured using the 

VICON system, and the measurements of all joint angles (as read by the driver and 

passed through UDP to Simulink) were recorded in an mxn matrix (q). When combined 

with the VICON measurements of the base spacecraft position (q0), the homogeneous 

transformation matrix describing the end effector position (TEE) can be solved for 

numerically. From this, the x and y translational and the z  rotational components of the 

end effector in the inertial frame are extracted. 

Based on the kinematic model’s estimates of the end effector state, small 

variations were induced into the x, y, and z  measurements to see how much a small 

change in each parameter would affect the output of the kinematic model ( k ). These 

partial derivatives were collected into the kinematic calibration matrix ( ), which is of 

the general form shown in Equation 19. Again, the planar case simplifies the calculations. 

The parameters d and do not change over time, so they are inconsequential to the 

calculations. The q parameter for all four joints and the a parameters for all four links, 

however, must be incrementally adjusted to properly tune the joint measurements. 



 81

Further, refinement of the location of Joint 1 with respect to the base’s center of mass is 

necessary, so the parameters , 1 , 1 , 1, ,B J B J B Jx y  must be similarly manipulated. 

 , 1 , 1 , 1B J B J B Jk a k d k x k y k               (19) 

With each iteration, the nominal end effector state vector ( nx ) was compared to 

the experimentally measured end effector state vector ( mx ) and the differences compiled 

into the matrix x  (Equation 20) [47]. 

 m nx x x    (20) 

The matrix  is a combination of the of the kinematic calibration matrix ( ) 

and the nominal/measured differences ( x ) as shown in Equation 20. An iterative batch 

least-squares method was used to drive down the values of  , the “parameter 

variations with respect to the nominal values” [47]. When the least-squares solution 

returned a  vector within a pre-determined tolerance (Equation 21), the solution 

provided insight into how much the estimated parameters, varied from the true system 

behavior. 

  1T T x


     
 (21) 

E. DYNAMIC CALIBRATION  

1. Overview 

While the kinematic calibration concerns itself with refinement of kinematic 

parameters, the dynamic calibration concerns itself with refinement of the dynamic 

parameters. The two calibration processes work hand-in-hand; the offsets determined by 

the kinematic calibration feed the dynamic calibration model as an initial guess. Thus, it 

is not possible to complete the dynamics calibration without first completing the 

kinematics calibration.  

Functionally, both processes share similarities. The same Simulink controller, 

VICON system setup, and telemetry data capturing technique was used for the dynamic 
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calibration. All measurements were taken with the spacecraft/manipulator system in a 

stationary position; measurements were not taken while the motors were active or while 

the residual vibration from the maneuver was naturally damping out. Unlike the 

kinematics calibration, the dynamics calibration required capturing the three sets of 

position data both prior to a maneuver and following the maneuver: the initial ( 01q ) and 

final ( 02q ) positions of the base, the initial ( 1iq ) and final positions ( 2iq ), and the initial  

( 1eex ) and final ( 2eex ) positions of the end effector. The main script for the dynamics 

calibration is in Appendix K: MARSMAN_DynCal, but before proceeding with the 

actual calibration, several supporting functions are employed to account for the system 

dynamic effects and produce—as an interim objective—the nominal state vector of the 

base-manipulator system 0 0 0( , , )x yq q q  .  

To obtain the nominal state vector, the link and body rotation matrices ( LR and 

0,R respectively; both are outputs of Kinematics_Serial.m) are first used to construct the 

inertia matrices of the base 0( )I  and manipulator ( )mI . The inertia matrices and the twist 

propagation matrices ( ijB and 0iB , also products of Kinematics_Serial.m) contribute to 

the mass composite body matrices of the base 0( )M  and the manipulator ( )mM . With 

these, the generalized inertia matrices of the base ( 0H ) and manipulator ( )mH  can be 

calculated and used to determine the derivative of the base position 0( )q . The vector is 

integrated and variation applied to the components 0 0 0( , , )x yq q q  for construction of the 

dynamic calibration matrix ( ) . 

2. Inertia Matrices 

The link and body rotation matrices ( LR and 0R ) from Kinematics_Serial.m are 

passed to a supporting function (see Appendix L: I_I.m). The body rotation matrix 0( )R  

is multiplied by the previously defined inertia of the spacecraft to produce the inertia 

matrix of the base in the inertial frame 0( )I . A series of n inertia matrices in the inertial 

frame (one for each link) are calculated based on Equation 22. 
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I Li I T
mi Li i LiI R I R  (22) 

3. Mass Matrices 

The link mass matrices ( iM ) and the base mass matrix ( 0M ) takes the general 

form shown in Equation 23 and takes into account the inertia (I) and mass (m) properties 

of each link. In the figure below, 3,31 represents a 3x3 identity matrix [48].  

3,3
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I
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   (23) 

From a physical perspective, the mass and inertia properties of the links and of the 

base effect the twisting of the joints. The mass composite body matrices of the links 

( )mM take into account these effects (encapsulated in the twist propagation matrices) by 

first computing the effects at the nth joint and conducting a backwards recursion. When 

the recursion has accounted for all links, mM is the end result (Equation 24). The mass 

composite body matrix of the base 0( )M  is computed using the 0iB twist propagation 

matrix and the mass composite body matrix produced by the recursion (Equation 25) 

[48]. The code for the function used to conduct these calculations is given in Appendix 

M: MCB_Serial.m. 

, , , 1 ,
T

m m i ij i m i ij iM M B M B  
 (24) 

0 0 0 1 0
T
i m iM M B M B  

 (25) 

4. Generalized Inertial Matrices 

With 0 0 0, , , , , ,m ij i mM M B B P p  the generalized inertia matrix of the base 0( )H  and 

the generalized coupling inertia matrix of the manipulator and the base 0( )mH  can be 

computed. The script that accomplishes this calculation is given in Appendix N: 

GIM_Serial.m. The calculation of 0H follows the matrix multiplication given in Equation 

26 [48]. Similarly, the coupling inertia matrix, which accounts for the twists of the joints, 
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the inertias and masses of the links, and how these affect the inertia of the base-

manipulator system is given in Equation 27 [48]. 

0 0 0 0
TH P M P 

(26) 

0 , 0,i 0
T

m m m i iH p M B P 
 (27) 

5. Determining the Base-Manipulator System State ( q ) 

The goal of calculating inertias, mass composite body matrices, and generalized 

inertia matrices is to determine the base-manipulator’s state ( )q , which consists of the 

base state vector and the manipulator state vector as shown in Equation 28.  
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    (28) 

The time derivative of the base’s state vector 0( )q  is calculated by Equation 29, 

which is based on the conservation of momentum principle and includes previously 

calculated inertia matrices [48]. The manipulator joint velocities ( mq ) are calculated by 

subtracting the initial measured position of each joint from the final measured position of 

each joint and dividing by the time of the maneuver (Equation 30). The calculation of q is 

accomplished by the function in Appendix O: q_dot_fun.m.  

Since the state of the base is only a function of the manipulator path, the 

experimentation can exploit a non-holonomic constraint. That is, since only one joint is 

moved at a time, the time over which the movement occurs is irrelevant; the system will 

achieve the same position whether the maneuver takes one or one hundred seconds. For 

the purposes of the MATLAB calculations, all maneuver times ( )t  were set to be five 

seconds. The derivative is simply integrated to obtain the state vector of the system ( )q  

and the components of 0 0 0( , , )x yq q q  are used in the calibration proper. See Appendix P: 

q0_maneuver.m for the integration function.  
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1
0 0 0

T
m mq H H q  

 (29) 

, 2 , 1( ) /m m i m iq q q t  
 (30) 

6. Inducing Variation, the Dynamic Calibration Proper 

As in the kinematics calibration, in the dynamics calibration, small variations are 

applied to the parameters of interest—in this case, the b vector and the inertia I. These 

small variations are passed through the dynamics model. These partial differentials are 

used to form the dynamics calibration matrix, which, like the kinematics calibration 

matrix is denoted as . In this case however,   depends upon how much the outputs of 

the dynamics model ( )d  change with changes in the parameters of interest (Equation 31). 

  d b d I    
 (31) 

Figure 63.  Dynamic Calibration Matrix. 

The dynamics model (see Appendix P: q0_maneuver.m) integrates the joint 

positions to ultimately predict the coordinates of the system state vector in the inertial 

frame. As in the kinematics calibration,   and the matrix of nominal/measured 

differences ( )x  are used to construct  , and a least-squares method is used to refine 

the parameters. Ultimately, the dynamics calibration provided insight into how much the 

link inertias ( )iI  and the b vectors varied between theoretical prediction and experimental 

measurement.  

F. ANALYSIS 

Achieving a valid least-squares solution to the kinematics and then the dynamics 

calibration defined the geometry and mass properties of the base-manipulator system. In 

the planar case with revolute joints, DH parameter a for the links was calculated to be 

0.382532 m for Links 1–3 and slightly shorter for Link 4. This conclusion makes sense 

because Link 4 is slightly shorter than the other links due to the lack of an attached joint 

or end effector (Figure 64). Also, while a deliberate effort was made to initially position 

all joints at a zero angle, the calibration process showed that the joints were actually 



 86

slightly offset. Note that Link 1’s joint offset is 0.00 degrees, while the offset of the base 

(L0) is 18.21 degrees. Since Joint 1 is attached to the base, it could equivalently be said 

that the offset of the base is 0.00 degrees while the offset of Joint 1 is 18.21 degrees. 

Overall, the mean position residual of the system was thousandths of a meter, and the 

mean angular residual was on the order of hundredths of a degree—indicators that the 

kinematic calibration was successful.  

 

Figure 64.  MATLAB Results of the Kinematics Calibration. 

The dynamics calibration did not provide as precise a solution as the kinematics 

calibration. The inertias of the links were all calculated to be the same, and the b vectors, 

with the exception of the shorter Link 4 were also determined to be the same (Figure 65).  

The mean and standard deviation of the data set, however, were considerably larger than 

seen in the kinematics portion. This decrease in precision is partially due to the almost 

imperceptible motion of the base due to Link 4’s motion, and sensitivity of the system to 

residual motion after the cessation of movement commands. During experimentation, it 

was noticed that the system tended to drift after it should have come to a stable stop, 

possibly due to a misaligned air-pad, a piece of air tubing dragging on the surface of the 

table, or slight imperfections on the surface of the monolith.   
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Figure 65.  MATLAB Outputs of the Dynamic Calibration. 
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VI. CONCLUSION 

A. SUMMARY OF WORK 

This thesis built upon several years of work at the Naval Postgraduate School 

Spacecraft Robotics Laboratory and took advantage of an established laboratory 

environment with a state-of-the-art motion tracking system, granite monolith, and 

already-constructed Floating Spacecraft Simulator (FSS) platform. The initial link design 

was improved by adopting an all commercial-off-the-shelf hardware components, 

changing the communications architecture to one that uses Wi-Fi, and coding more 

effective software for the processing of the system’s data. The initial six months of the 

effort centered around gaining an understanding of the previous work and the integration 

of the new hardware components and software. Glitches in software development caused 

significant delay but were ultimately overcome.  

With the second link completed, the design improvements were retrofitted onto 

the original link, and the third and fourth links were constructed in relatively little time. 

With the four-link configuration constructed and attached to the FSS, the kinematic and 

dynamic calibration processes began. MATLAB and Simulink tools, which became the 

Spacecraft Robotics Toolkit (SPART), were developed and validated via table-top 

experimentation. The work for this thesis contributed to three conference papers. Two 

were presented at the 6th International Conference on Astrodynamics Tools and 

Techniques (ICATT), and an abstract for the third has been accepted for the American 

Institute of Aeronautics and Astronautics’ (AIAA)  Space and Aeronautics Forum and 

Exposition in September 2016 [23], [42], [49]. Additionally, a patent application is being 

pursued. 

B. FUTURE WORK 

Due to the modular nature of the manipulator links, future research can take a 

number of different directions. In the near term, however, work will likely continue with 

the four-link manipulator configuration. 
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(1) How Small is Small? 

Throughout the literature on the subject, the term “small spacecraft” is used when 

describing a spacecraft whose motion is significantly dynamically coupled with the 

motion of the manipulator. As discussed in the introduction, the ratio of the base 

mass/inertia to the manipulator mass/inertia are useful measures of how heavily the 

dynamics are likely to couple. There is, however, no apparent effort to quantify at what 

ratios the dynamics become “significantly” coupled. How big does the manipulator have 

to be to affect the base dynamics? How small does the manipulator have to be for its 

effects to be ignored? With the tools developed in the SRL, this topic could be 

investigated via simulation and table-top experimentation.  

(2) Explore Manipulator Control Algorithms 

The intent of the kinematics and dynamics calibration (and all the proceeding 

hardware and software development) was to put in place the pieces for a controllable 

manipulator. As a stepping stone, efforts to control the manipulator not from a command 

laptop (as done in the experimentation for this thesis) but from the FSS’s onboard 

computer are underway. Other areas ripe for investigation include the most effective 

manner in which to employ a manipulator with respect to time or power usage; these are 

two areas in which optimal control theory could be explored.  

The current investigation focused on a four-link serial manipulator, but the 

modularity of MARSMAN allows for exploration of different topologies. For example, 

with the in-house additive manufacturing capability, a serial manipulator that branches 

into multiple arms could be constructed. Further, closed-tree topologies such as two two-

link manipulators working in concert as a pincer could be investigated. These topologies 

are significantly more difficult to analyze and require the employment of differential 

algebraic equations (DAE). Whatever the unique configuration, different configurations 

of the modular links will require adaptations of the kinematics and dynamics calibration 

and present their own control challenges 
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(3) Construct and Integrate an End Effector  

This project focused on the construction of the manipulator links themselves, and 

the mathematical modeling assumed a notional end effector was attached. An end 

effector is necessary for proximity operations that aim to capture a target FSS. A simple 

end effector could consist of a Velcro surface mounted to both the target vehicle and the 

end of the manipulator. More complex end effectors, like grippers, provide additional 

opportunities for hardware construction and software integration. Yale University’s 

OpenHand Project provides computer aided drafting (CAD) files for a variety of 

manipulators that can be assembled via additive manufacturing. The tendons for the 

gripper are constructed by pouring resin into a 3-D printed mold [50]. With a gripper, 

rendezvous and capture problems can become an active area of research. 

 

Figure 66.  Sample End Effector from the Yale OpenHand Project. Source: [50]. 

(4)  Rendezvous and Capture Operations  

With viable control algorithms and an end effector, rendezvous and capture 

operations become possible. Initial attempts may consider capturing a stationary 

spacecraft with the eventual goal of de-tumbling a spinning FSS, perhaps while 
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maintaining visual observation via a camera mounted on the base spacecraft. This line of 

research is synergistic with the current research efforts at the SRL for FSS-to-FSS 

docking. From a guidance, navigation, and control (GNC) perspective, this problem 

becomes particularly challenging because it requires not only control of the manipulator 

itself but also control of the base spacecraft via its thrusters and reaction wheels.  

(5) Hardware Upgrades 

The Arduino Wi-Fi shield is no longer in production. As components fail, they 

will need to be replaced with a comparable capability. The Raspberry Pi microcontroller 

has the potential to replace the Arduino Wi-Fi shield, the Arduino Due, and the RS232 

shield because it can serve as microcontroller, create its own ad hoc Wi-Fi network, and 

provide the necessary connection ports to the motor driver. The creation of the ad hoc 

Wi-Fi network will allow for the links, the FSS, and a telemetry laptop to communicate 

directly in a more realistic and reliable manner. With this capability, the D-link router can 

be removed from the communications architecture. Further, the Raspberry Pi allows for a 

simplified interface to control the end effector and the possibility of attaching a small 

camera for use in proximity operations. 

(6) The Self-Assembling Manipulator 

Apart from organic propulsion, the current design of the manipulator links is such 

that they are very nearly miniature FSSs. With modification to the current modular 

design, each link could be made to operate independently, and the links themselves could 

rendezvous to form a workable manipulator that could then be used to perform a useful 

task. 

(7) A Real Manipulator Spacecraft 

The current base-manipulator system is a test-bed configuration never intended to 

fly in space. While the development of a flight-worthy base-manipulator system is 

outside the current scope of the SRL’s research efforts, the development of such a 

concept could easily provide research material for students in structures, thermal systems, 

power systems, and GNC. The development of such a spacecraft would be a worthy of 

exploration during NPS’s capstone design sequence. 
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C. RESEARCH SIGNIFICANCE 

The research conducted for this thesis is significant in several ways. As 

mentioned previously, the initial development of a modular robotic manipulator link in 

2014 was the first of its kind. To the knowledge of the author, the subsequent hardware 

and software improvements and the construction of the four-link manipulator from 

modular links is unique in academia. The kinematic and dynamic models, elucidated by 

SRL writings such as [48], was implemented via MATLAB and, along with the 

calibration code, made publicly available to anyone wishing to investigate spacecraft with 

attached manipulators—another first-of-its-kind effort to share knowledge with the larger 

space robotics community. The research work over the past year has contributed to two 

published conference papers; a third conference paper abstract based on the work has 

been accepted for the fall of 2016. Finally, the manipulator is being used to teach 

graduate students robotics and multi-body mechanics at NPS. 

Ultimately, this project implemented the highly non-linear dynamical model of a 

small spacecraft with an attached robotic manipulator consisting of multiple modular 

links. The concept was validated through a table-top experimentation campaign that 

proved the concept of controlling multiple links independently to complete the kinematic 

and dynamic calibrations. The experimental framework will allow further exploration 

into spacecraft/robotic mechanics, control theory, and operational concepts ranging from 

docking and capture maneuvers to spacecraft servicing. The beauty of the MARSMAN 

system is that a new piece of hardware does not need to be funded and built each time a 

new line of inquiry appears. The modular links can be reconfigured for any number of 

mission scenarios that may be of interest to civil, military, or commercial space entities.  
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APPENDIX A. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE HEADER FILE [51] 

#ifndef HX711_h 
#define HX711_h 
 
#if ARDUINO >= 100 
#include "Arduino.h" 
#else 
#include "WProgram.h" 
#endif 
 
class HX711 
{ 
 private: 
  byte PD_SCK; // Power Down and Serial Clock 
Input Pin 
  byte DOUT;  // Serial Data Output Pin 
  byte GAIN;  // amplification factor 
  long OFFSET; // used for tare weight 
  float SCALE; // used to return weight in grams, 
kg, ounces, whatever 
 
 public: 
  // define clock and data pin, channel, and gain 
factor 
  // channel selection is made by passing the 
appropriate gain: 128 or 64 for channel A, 32 for channel B 
  // gain: 128 or 64 for channel A; channel B works 
with 32 gain factor only 
  HX711(byte dout, byte pd_sck, byte gain = 128); 
 
  virtual ~HX711(); 
 
  // check if HX711 is ready 
  // from the datasheet: When output data is not 
ready for retrieval, digital output pin DOUT is high. 
Serial clock 
  // input PD_SCK should be low. When DOUT goes to 
low, it indicates data is ready for retrieval. 
  bool is_ready(); 
 
  // set the gain factor; takes effect only after a 
call to read() 
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  // channel A can be set for a 128 or 64 gain; 
channel B has a fixed 32 gain 
  // depending on the parameter, the channel is 
also set to either A or B 
  void set_gain(byte gain = 128); 
 
  // waits for the chip to be ready and returns a 
reading 
  long read(); 
 
  // returns an average reading; times = how many 
times to read 
  long read_average(byte times = 10); 
 
  // returns (read_average() - OFFSET), that is the 
current value without the tare weight; times = how many 
readings to do 
  double get_value(byte times = 1); 
 
  // returns get_value() divided by SCALE, that is 
the raw value divided by a value obtained via calibration 
  // times = how many readings to do 
  float get_units(byte times = 1); 
 
  // set the OFFSET value for tare weight; times = 
how many times to read the tare value 
  void tare(byte times = 10); 
 
  // set the SCALE value; this value is used to 
convert the raw data to "human readable" data (measure 
units) 
  void set_scale(float scale = 1.f); 
 
  // set OFFSET, the value that's subtracted from 
the actual reading (tare weight) 
  void set_offset(long offset = 0); 
 
  // puts the chip into power down mode 
  void power_down(); 
 
  // wakes up the chip after power down mode 
  void power_up(); 
}; 
 
#endif /* HX711_h */ 
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APPENDIX B. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE C++ SOURCE CODE FILE [51] 

#include <Arduino.h> 
#include <HX711.h> 
 
HX711::HX711(byte dout, byte pd_sck, byte gain) { 
 PD_SCK  = pd_sck; 
 DOUT  = dout; 
  
 pinMode(PD_SCK, OUTPUT); 
 pinMode(DOUT, INPUT); 
 
 set_gain(gain); 
} 
 
HX711::~HX711() { 
 
} 
 
bool HX711::is_ready() { 
 return digitalRead(DOUT) == LOW; 
} 
 
void HX711::set_gain(byte gain) { 
 switch (gain) { 
  case 128:  // channel A, gain factor 128 
   GAIN = 1; 
   break; 
  case 64:  // channel A, gain factor 64 
   GAIN = 3; 
   break; 
  case 32:  // channel B, gain factor 32 
   GAIN = 2; 
   break; 
 } 
 
 digitalWrite(PD_SCK, LOW); 
 read(); 
} 
 
long HX711::read() { 
 // wait for the chip to become ready 
 while (!is_ready()); 
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 byte data[3]; 
 
 // pulse the clock pin 24 times to read the data 
 for (byte j = 3; j--;) { 
  for (char i = 8; i--;) { 
   digitalWrite(PD_SCK, HIGH); 
   bitWrite(data[j], i, digitalRead(DOUT)); 
   digitalWrite(PD_SCK, LOW); 
  } 
 } 
 
 // set the channel and the gain factor for the next 
reading using the clock pin 
 for (int i = 0; i < GAIN; i++) { 
  digitalWrite(PD_SCK, HIGH); 
  digitalWrite(PD_SCK, LOW); 
 } 
 
 data[2] ^= 0x80; 
 
 return ((uint32_t) data[2] << 16) | ((uint32_t) 
data[1] << 8) | (uint32_t) data[0]; 
} 
 
long HX711::read_average(byte times) { 
 long sum = 0; 
 for (byte i = 0; i < times; i++) { 
  sum += read(); 
 } 
 return sum / times; 
} 
 
double HX711::get_value(byte times) { 
 return read_average(times) - OFFSET; 
} 
 
float HX711::get_units(byte times) { 
 return get_value(times) / SCALE; 
} 
 
void HX711::tare(byte times) { 
 double sum = read_average(times); 
 set_offset(sum); 
} 
 
void HX711::set_scale(float scale) { 
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 SCALE = scale; 
} 
 
void HX711::set_offset(long offset) { 
 OFFSET = offset; 
} 
 
void HX711::power_down() { 
 digitalWrite(PD_SCK, LOW); 
 digitalWrite(PD_SCK, HIGH);  
} 
 
void HX711::power_up() { 
 digitalWrite(PD_SCK, LOW);  
} 
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APPENDIX C. ONBOARDLINK.INO 

// Arduino On-board Software controlling a manipulator link (OnBoardLink.ino) 
// Sends telemetry and receives commands via TCP/UDP. 
// Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew 
 
// Through UDP the manipulator sends: 
//   * Position in rad. 
//   * Angular velocity in rad/s. 
//   * Joint torque in Nm 
// 
// The manipulator accepts velocity commands in rad/s. 
// 
 
//--- CODE ---// 
 
//Include libraries 
#include <SPI.h> 
#include <WiFi.h> 
#include <WiFiUdp.h> 
#include "HX711.h" //for load cell amp to read torque 
 
//Main loop time in ms 
#define LOOP_TIME 100 // 10 Hz 
 
//Wireless Parameters 
int stat_w = WL_IDLE_STATUS; 
#define ssid  "dlink_srl" //  Network SSID (name) 
#define FSS_IP  "192.168.0.133" // IP of the FSS 
#define localPort  4097 // Local port to listen on 
 
//FSS ports (will be assigned depending on mac address) 
#define FSS_PORT_A 25010 
#define FSS_PORT_B 25020 
#define FSS_PORT_C 25030 
#define FSS_PORT_D 25040 
byte mac[6];  //Holds Wi-Fi shied mac address 
int FSS_port= FSS_PORT_A; //Holds FSS port 
 
//Mac addresses of WIfi shields (in reverse!) 
#define MAC_A 0xb1,0xc5,0x01,0x0e,0xc4,0x78 
#define MAC_B 0x7a,0xfb,0x01,0x0e,0xc4,0x78 
#define MAC_C 0x49,0xc5,0x01,0x0e,0xc4,0x78 
#define MAC_D 0x47,0xc5,0x01,0x0e,0xc4,0x78 
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#define calibration_factor 1.0 
#define DOUT  8 //Torque sensor DOUT pin # 
#define CLK  9 //Torque sensor CLK pin # 
 
//Motor Parameters 
#define POS_Conversion 624339 // Conversion counts per radian 
#define VEL_Conversion 624339 // Conversion counts/s to radians per second 
#define CUR_Conversion 100    // Conversion from driver response to Amperes 
#define COUNT_OFFSET 0        // Count offset to 0 degrees. 
 
//Joint limits 
#define POS_LIMIT 1.4835 // 85 degrees 
 
//UDP packet buffer 
byte packetBuffer[255]; // Buffer to hold incoming packet 
 
//Receiver buffer for Serial to driver 
String DriverString; 
 
//Create Wi-Fi UDP class 
WiFiUDP Udp; 
 
// Definition of the data class that will hold the data to reveieve and send 
typedef union { 
 float floatPrec; 
 byte binary[4]; 
} binaryFloat; 
 
//Loop variables 
binaryFloat Pos, Velocity, Torque, CS; //Data variables 
 
//Torque sensor sariable 
HX711 scale(DOUT, CLK);  //defining a variable of the class HX711 that is defined in 
the X711.h library 
 
//--- SETUP ---// 
void setup() { 
 
  //Initialize serial (debug) 
  Serial.begin(9600); 
  //Initialise serial port with Driver 
  Serial2.begin(9600); 
  Serial2.setTimeout(20); // 
  Serial.println("Serial to Driver initialized"); 
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  //Wait 5 s to allow Driver power-up 
  delay(5000); 
 
  //Initialize Driver 
  DriverSetup(); 
 
  //Initialize Wifi 
  WifiSetup(); 
   
  //Initialize UPD listening 
  UDPSetup(); 
 
  //Torque Setup 
  Serial.println("Initializing Torque Sensor"); 
  scale.set_scale(calibration_factor); //This value is obtained by using the 
SparkFun_HX711_Calibration sketch 
  scale.tare();  //Assuming there is no weight on the scale at start up, reset the scale to 0 
   
  Serial.println("Initalization Complete"); 
} 
 
//--- MAIN LOOP ---// 
float command=0; 
void loop() { 
   
  //Initial loop time 
  int t_init = millis(); 
   
  //Recieve velocity commands 
  if (Udp.parsePacket()){ 
    //Read command 
    command=VelCommand(); 
    //Within limits -> execute motion 
    if (abs(Pos.floatPrec)<POS_LIMIT) {execute(command);} 
    else if (Pos.floatPrec>POS_LIMIT & command<0) {execute(command);} 
    else if (Pos.floatPrec<-POS_LIMIT & command>0) {execute(command);} 
   } 
    
   //Check if the joint limits are exceeded 
   if (Pos.floatPrec>POS_LIMIT & Velocity.floatPrec>0) {execute(0);} //Exceeded limits 
-> stop motion 
   else if (Pos.floatPrec<-POS_LIMIT & Velocity.floatPrec<0) {execute(0);} //Exceeded 
limits -> stop motion 
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  //Get Torque 
  float  reading = scale.read_average(1); 
  Torque.floatPrec = (reading-8388608)/487848.1*0.33; 
  //Get joint position 
  Pos.floatPrec=GetPos(); 
  //Get joint velocity 
  Velocity.floatPrec=GetVelocity(); 
   
  //Compute checksum 
  CS.floatPrec = 100-(Torque.floatPrec*100+Pos.floatPrec*100+Velocity.floatPrec*100); 
   
  //Send data via UDP 
  Udp.beginPacket(FSS_IP, FSS_port); 
  //Udp.write(Time.binary,4); 
  Udp.write(Pos.binary,4); 
  Udp.write(Velocity.binary,4); 
  Udp.write(Torque.binary,4); 
  //Udp.write(Current.binary,4); 
  Udp.write(CS.binary,4); 
  int Udp_send = Udp.endPacket(); 
   
  //Print all the variables in a single line 
  Serial.print("Angle: "); 
  Serial.print(Pos.floatPrec*180/3.1415,4); 
  Serial.print("deg, "); 
  Serial.print("Velocity: "); 
  Serial.print(Velocity.floatPrec*180/3.1415,4); 
  Serial.print("deg/s, "); 
  Serial.print("Torque: "); 
  Serial.print(Torque.floatPrec,4); 
  Serial.print("Nm, "); 
  Serial.print("UDP Send: "); 
  Serial.print(Udp_send); 
  Serial.print(", Exec Time: "); 
  Serial.print(millis()-t_init); 
  Serial.println("ms"); 
    
  //Wait until total loop time has elapsed (loops executes at a constant rate) 
  while ((LOOP_TIME+t_init)>millis()) {} 
} 
 
 
//--- FUNCTIONS ---// 
 
void WifiSetup() { 
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  // check for the presence of the shield: 
  delay(1000); //Wait for WiFi to boot up 
  if (WiFi.status() == WL_NO_SHIELD) { 
    Serial.println("WiFi shield not present"); 
    // don't continue: 
    while (true); 
  } 
 
  String fv = WiFi.firmwareVersion(); 
  Serial.print("Wifi firmware version: "); 
  Serial.println(fv); 
  if ( fv != "1.1.0" ) 
    Serial.println("Please upgrade the firmware."); 
 
  // attempt to connect to Wifi network: 
  while ( stat_w != WL_CONNECTED) { 
    Serial.print("Attempting to connect to SSID: "); 
    Serial.println(ssid); 
    // Connect to network. 
    stat_w = WiFi.begin(ssid); 
    //Print result (for debugging) 
    Serial.print("Wifi status: "); 
    Serial.println(stat_w); 
 
    // wait 2 seconds for connection: 
    delay(2000); 
  } 
  Serial.println("Connected to wifi"); 
   
  //Get your shield mac address 
  WiFi.macAddress(mac); 
   
  // Assign FSS port based on MAC address 
  byte mac_a[6] = {MAC_A}; 
  byte mac_b[6] = {MAC_B}; 
  byte mac_c[6] = {MAC_C}; 
  byte mac_d[6] = {MAC_D}; 
  if (memcmp(mac,mac_a,6)==0) { 
    FSS_port = FSS_PORT_A; 
  } 
  else if (memcmp(mac,mac_b,6)==0) { 
    FSS_port = FSS_PORT_B;  
  } 
  else if (memcmp(mac,mac_c,6)==0) { 
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    FSS_port = FSS_PORT_C;  
  } 
  else if (memcmp(mac,mac_d,6)==0) { 
    FSS_port = FSS_PORT_D;  
  } 
   
   
  //Print wifi variables 
  printWifiStatus(); 
} 
 
 
//Display WIFI information and get Mac address 
void printWifiStatus() { 
   
  // print the SSID of the network you're attached to: 
  Serial.print("SSID: "); 
  Serial.println(WiFi.SSID()); 
 
  // print your WiFi shield's IP address: 
  IPAddress ip = WiFi.localIP(); 
  Serial.print("IP Address: "); 
  Serial.println(ip); 
   
  // print your WiFi shield's MAC address: 
  Serial.print("MAC: "); 
  Serial.print(mac[5],HEX); 
  Serial.print(":"); 
  Serial.print(mac[4],HEX); 
  Serial.print(":"); 
  Serial.print(mac[3],HEX); 
  Serial.print(":"); 
  Serial.print(mac[2],HEX); 
  Serial.print(":"); 
  Serial.print(mac[1],HEX); 
  Serial.print(":"); 
  Serial.println(mac[0],HEX); 
   
  // print the target FSS port 
  Serial.print("FSS port: "); 
  Serial.println(FSS_port); 
   
 
  // print the received signal strength: 
  long rssi = WiFi.RSSI(); 
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  Serial.print("signal strength (RSSI):"); 
  Serial.print(rssi); 
  Serial.println(" dBm"); 
} 
 
//Setup the Driver to Velocity Mode 
void DriverSetup() { 
 
  //Set all the variables required 
  Serial.println("Setting up Current Mode."); 
 
  //Set acceleration rate 
  Serial.println("Setting acceleration rate."); 
  Serial2.print("s r0x36 "); 
  Serial2.print(50000); //Acceleration in counts/second^2 
  Serial2.print("\n"); 
  DriverString = Serial2.readStringUntil('\r'); 
  Serial.println(DriverString); 
   
  //Set decceleration rate 
  Serial.println("Setting decceleration rate."); 
  Serial2.print("s r0x37 "); 
  Serial2.print(50000); //Decceleration in counts/second^2 
  Serial2.print("\n"); 
  DriverString = Serial2.readStringUntil('\r'); 
  Serial.println(DriverString); 
   
  //Set Velocity 
  Serial.println("Setting Velocity"); 
  Serial2.print("s r0x2f "); 
  Serial2.print(0); //Velocity in  
  Serial2.print("\n"); 
  DriverString = Serial2.readStringUntil('\r'); 
  Serial.println(DriverString); 
 
  //Enable Amplifier 
  Serial.println("Enable Amplifier."); 
  Serial2.print("s r0x24 11\n"); 
  DriverString = Serial2.readStringUntil('\r'); 
  Serial.println(DriverString); 
} 
 
//Get position joint data from the driver 
float GetPos() { 
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  //Send command to driver asking for motor position. 
  Serial2.print("g r0x32\n"); 
  //Read driver reply 
  DriverString = Serial2.readStringUntil('\r'); 
  //Remove the first "v" 
  DriverString = DriverString.substring(2); 
  //Conver it to an angle in rad 
  return (DriverString.toFloat()-COUNT_OFFSET)/POS_Conversion; 
} 
 
 
//Get joint velocity data from the driver 
float GetVelocity() { 
   
  //Send command to driver asking for motor velocity. 
  Serial2.print("g r0x18\n"); 
  //Read driver reply 
  DriverString = Serial2.readStringUntil('\r'); 
  //Remove the first "v" 
  DriverString = DriverString.substring(1); 
  //Conver it to an angular velocity in rad/s 
  return DriverString.toFloat()/10/VEL_Conversion; 
} 
 
//Get joint velocity data from the driver 
float GetCurrent() { 
   
  //Send command to driver asking for motor current. 
  Serial2.print("g r0x0c\n"); 
  //Read driver reply 
  DriverString = Serial2.readStringUntil('\r'); 
  //Remove the first "v" 
  DriverString = DriverString.substring(1); 
  //Convert it to a current in Amps 
  return DriverString.toFloat()/CUR_Conversion; 
  
} 
 
//Send velocity command to driver 
void execute(float Velocity) { 
   
  //Set Velocity 
  Serial2.print("s r0x2f "); 
  Serial2.print(Velocity*VEL_Conversion*10,0); //Velocity in 0.1 counts per second 
  Serial2.print("\n"); 
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  //Read driver response 
  DriverString = Serial2.readStringUntil('\r'); 
} 
 
//Initialize UDP connection 
void UDPSetup(){ 
   
  Serial.println("Starting connection to server..."); 
  // if you get a connection, report back via serial: 
  if (Udp.begin(localPort) == 1) Serial.println("started"); 
  else Serial.println("failed"); 
} 
 
//Read velocity command from UDP 
float VelCommand() { 
   
  //Read velocity command from UDP stream 
   binaryFloat Velocity; 
   Udp.read(Velocity.binary,4); 
   return Velocity.floatPrec; 
} 
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APPENDIX D. MARSMAN_DRIVER_LOAD.CCX 

14 
1 
95,0,Host Config State,2:-1:0:1792:-1:-1:150:-1:-1:-1:-1:-
1:-1:-1:-1:-1:-1:-1:-1:-1 
87,0,Amp Family,3 
40,0,Motor Type,48 
89,0,Amp Max Voltage,910 
84,0,Amp ISense,1050 
83,0,Amp Continuous Current,300 
82,0,Amp Peak Current,900 
88,0,Amp Peak Current Time,1000 
0,0,Current Cp,55 
1,0,Current Ci,19 
2,0,Programmed Current Command,0 
19,0,Analog Input Scale,425 
1a,0,Analog Input Offset,0 
21,0,User Peak Current Limit,425 
22,0,User Continuous Current Limit,225 
23,0,User Peak Current Time Limit,1000 
24,0,Desired State,11 
26,0,Analog Input Deadband,0 
27,0,Velocity Vp,9984 
28,0,Velocity Vi,10000 
2f,0,Programmed Velocity Command,0 
31,0,Velocity Gains Scalor,8 
36,0,Velocity Loop Acceleration Limit,500 
37,0,Velocity Loop Deceleration Limit,500 
39,0,Velocity Fast Stop Ramp,131072 
3a,0,Velocity Loop Velocity Limit,131072000 
3f,0,Velocity Tracking Time,100 
3e,0,Velocity Tracking Window,393216 
41,0,Motor Manufacturer,Harmonic Drive Systems 
42,0,Motor Model Number,FHA-8C-30-12S17bE 
43,0,Motor Units,0 
44,0,Motor Inertia,29000 
46,0,Motor Brake,1 
48,0,Motor Torque Constant,3060 
49,0,Motor Resistance,108 
4a,0,Motor Inductance,44 
4b,0,Motor Peak Torque,13000 
4c,0,Motor Continuous Torque,6900 
4d,0,Motor Velocity Limit,131072000 
4e,0,Motor Wiring,1 
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53,0,Brake/Stop Delay Time,0 
54,0,Motor Brake Delay Time,0 
55,0,Motor Brake Activation Velocity,0 
56,0,Motor Back Emf Constant,320 
6a,0,Commanded Current Ramp,10000 
70,0,Output 1 Config,100:4000:0 
78,0,Input 1 Config,17 
79,0,Input 2 Config,0 
7a,0,Input 3 Config,0 
7b,0,Input 4 Config,0 
7c,0,Input 5 Config,0 
7d,0,Input 6 Config,0 
80,0,Amp Model Number,DEP-090-09 
86,0,Servo Period,4 
8a,0,Voltage Sense,2262 
92,0,Amp Name,Current 
98,0,Function Generator Config,2 
99,0,Function Generator Frequency,0 
9a,0,Function Generator Amplitude,0 
9b,0,Function Generator Duty Cycle,1000 
a5,0,Input Configuration Register,0 
a7,0,Fault Mask,1567 
a8,0,Digital Command Config,0 
a9,0,Digital Command Scaling,1 
ad,0,Hardware Type,897 
ae,0,Current Loop Offset,0 
30,0,Position Pp,1000 
33,0,Position Vff,16384 
34,0,Position Aff,0 
45,0,Motor Pole Pairs,5 
4f,0,Motor Hall Offset,-60 
50,0,Motor Hall Type,0 
52,0,Motor Hall Wiring,0 
5f,0,Velocity Loop Output Filter,8448:200:0:775:1550:775:-
12774:32763:5813 
60,0,Motor Encoder Type,14 
61,0,Motor Encoder Units,0 
62,0,Motor Encoder Counts,131072 
63,0,Motor Encoder Resolution,1000 
64,0,Motor Electrical Distance,100000 
65,0,Motor Encoder Direction,1 
6c,0,Position Capture Control Register,5 
71,0,Output 2 Config,100:44007f:0 
8e,0,Amp Ref Scale,11220 
af,0,Amp Options Register,2 
b1,0,Increment Rate,0 
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b2,0,Commutation Mode,6 
ba,0,Position Following Error Limit,131072 
bb,0,Position Following Warning Limit,65536 
bc,0,Position Tracking Window,32768 
bd,0,Position Tracking Window Time,10 
c8,0,Trajectory Profile Mode,0 
ca,0,Trajectory Position Command,1 
cb,0,Trajectory Max Velocity,32768000 
cc,0,Trajectory Max Accel,1310720 
cd,0,Trajectory Max Decel,1310720 
cf,0,Trajectory Abort Decel,6553600 
f0,0,Input 1 Debounce Time,0 
f1,0,Input 2 Debounce Time,0 
f2,0,Input 3 Debounce Time,0 
f3,0,Input 4 Debounce Time,0 
f4,0,Input 5 Debounce Time,0 
f5,0,Input 6 Debounce Time,0 
114,0,Velocity Vi Drain,0 
10c,0,Network Heart Beat Time,0 
10d,0,CANopen Node Guarding Time,0 
10e,0,CANopen Node Guarding Life Time Factor,0 
109,0,Camming Master Velocity,0 
105,0,Camming Configuration,4352 
106,0,Camming Forward Delay,0 
107,0,Camming Reverse Delay,0 
104,0,Phase Init Config,0 
be,0,Software Limit Deceleration,655360 
e4,0,Phase Init Current,425 
e5,0,Phase Init Time,400 
58,0,Gear Ratio,65537 
b6,0,PWM Deadband,1000 
ea,0,Detent Correction Gain,0 
57,0,Micro Steps Per Rev.,0 
59,0,Hall Velocity Shift,0 
5a,0,Multi Mode Port Configuration,1 
5b,0,Position Encoder Resolution,4000 
5c,0,Position Encoder Direction,0 
5d,0,Position Encoder Type,0 
67,0,Analog Encoder Shift,0 
6b,0,Velocity Loop Command Filter,-
7936:200:0:775:1550:775:-12774:32763:5813 
6f,0,PWM Mode,0 
72,0,Output 3 Config,0:0:0 
73,0,Output 4 Config,0:0:0 
7e,0,Input 7 Config,0 
7f,0,Input 8 Config,0 
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b3,0,Analog Encoder Scale,6667 
b8,0,Positive Software Limit,10000 
b9,0,Negative Software Limit,1000 
bf,0,Home Current Delay Time,250 
c1,0,Node ID configuration,1024 
c2,0,Home Configuration,512 
c3,0,Home Velocity Fast,3276800 
c4,0,Home Velocity Slow,655360 
c5,0,Home Accel/Decel,655360 
c6,0,Home Offset,0 
c7,0,Home Current,113 
ce,0,Trajectory Max Jerk,26214400 
d0,0,Input 9 Config,0 
d1,0,Input 10 Config,0 
d2,0,Input 11 Config,0 
d3,0,Input 12 Config,0 
d8,0,Regen Resistance,0 
d9,0,Regen Continuous Power,0 
da,0,Regen Peak Power,0 
db,0,Regen Peak Power Time,0 
e1,0,Regen Resistor Model Number,None 
e3,0,Position Loop Gains Multiplier,100 
e8,0,uStep Holding Current,0 
e9,0,uStep Run To Hold Time,0 
f6,0,Input 7 Debounce Time,0 
f7,0,Input 8 Debounce Time,0 
f8,0,Input 9 Debounce Time,0 
f9,0,Input 10 Debounce Time,0 
fa,0,Input 11 Debounce Time,0 
fb,0,Input 12 Debounce Time,0 
103,0,Network address Input Map,0 
11a,0,Amp Scaling Config,0 
121,0,Network Options,0 
123,0,Motor Position Wrap Value,0 
124,0,Load Position Wrap Value,0 
125,0,MACRO Amplifier's Encoder Capture Config,0 
127,0,Gain Scheduling Config,0 
12a,0,Motor Encoder Options,301994001 
12b,0,Position Encoder Options,1 
12d,0,Analog Input Filter,-7936:200:0:775:1550:775:-
12774:32763:5813 
10f,0,Registration Offset For Pulse and Direction,0 
13c,0,Minimum PWM Pulse Width PWM Position Mode,1000 
13d,0,Maximum PWM Pulse Width PWM Position Mode,2000 
100,0,CANopen limit mask,25364352 
94c,0,basic host cfg,33  
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APPENDIX E. VICON_CALIBRATE.M 

% Vicon_Calibrate.m captures the VICON data and saves it to an m-file 
% Developed by multiple users within the Spacecraft Robotics Laboratory 
% Adapted by Dr. Josep Virgili-Llop and CPT Jerry Drew 
 
% The data is saved in the following format: 
% [X [m], Y [m], Z [m], EulerX [rad], EulerY [rad], EulerZ [rad], Time 
[s]] 
% 
% Needs the Vicon SDK added in the path for it to work 
(http://www.vicon.com/products/software/datastream-sdk). 
 
%--- Clean and Clear ---% 
clc 
clear all 
close all 
  
%--- Object Name ---% 
  
%Vicon objects names 
obj_name = {'Prime2','EndEffector'}; %Prime2 is FSS 
  
  
%--- Load Vicon Matlab SDK ---% 
fprintf( 'Loading Vicon SDK...\n' ); 
addpath('C:\Program Files\Vicon\DataStream SDK\Win64\MATLAB') 
Client.LoadViconDataStreamSDK(); 
fprintf( 'done\n' ); 
  
%--- Create Client and connect to localhost ---% 
  
%Create Client 
ViconClient = Client(); 
  
%Connect to localhost (where Tracker is streaming the data) 
HostName = 'localhost:801'; 
fprintf( 'Connecting to %s ...', HostName ); 
while ~ViconClient.IsConnected().Connected 
  % Direct connection 
  ViconClient.Connect( HostName ); 
end 
  
%--- Configure Vicon Client ---% 
  
% Enable some different data types 
ViconClient.EnableSegmentData(); 
ViconClient.EnableMarkerData(); 
ViconClient.EnableUnlabeledMarkerData(); 
ViconClient.EnableDeviceData(); 
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%Check if data types are enabled 
fprintf( 'Segment Data Enabled: %d\n',          
ViconClient.IsSegmentDataEnabled().Enabled ); 
fprintf( 'Marker Data Enabled: %d\n',           
ViconClient.IsMarkerDataEnabled().Enabled ); 
  
  
% Set the streaming mode 
ViconClient.SetStreamMode( StreamMode.ClientPull ); 
ViconClient.SetAxisMapping( Direction.Forward, ... 
                         Direction.Left,    ... 
                         Direction.Up );    % Z-up 
                      
%--- Capture Data ---% 
  
%A dialog to stop the loop 
MessageBox = msgbox( 'Stop Capture', 'Vicon data capture' ); 
%A dialog to capture data 
CaptureBox = msgbox( 'Capture', 'Vicon data capture' ); 
  
%Initialize data structure 
EE_meas=[]; %state vector of end effector [3x1] 
q0_meas=[]; %state vector of base [3x1] 
  
% Loop until the message box is dismissed 
while ishandle( MessageBox ) 
     
    %Update message box 
    drawnow; 
     
    % Get frame 
    while ViconClient.GetFrame().Result.Value ~= Result.Success 
         
    end 
     
    for i=1:length(obj_name) 
        %Retrieve object values 
        Output_GetSegmentGlobalTranslation = 
ViconClient.GetSegmentGlobalTranslation( char(obj_name(i)), 
char(obj_name(i)) ); 
        Output_GetSegmentGlobalRotationEulerXYZ = 
ViconClient.GetSegmentGlobalRotationEulerXYZ( char(obj_name(i)), 
char(obj_name(i)) ); 
         
        %Save data 
        data(i,1:3) = [Output_GetSegmentGlobalTranslation.Translation( 
1 )/1e3, ... %x 
            Output_GetSegmentGlobalTranslation.Translation( 2 )/1e3, 
...            %y 
            Output_GetSegmentGlobalRotationEulerXYZ.Rotation( 3 )];                 
%theta z 
         
        %Display latest data 
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        if i==1; clc; end 
        fprintf('Object: %s\n',char(obj_name(i))); 
        fprintf('Position x,y,z: [%7.3f,%7.3f] 
[m]\n',data(i,1),data(i,2)); 
        fprintf('Euler Angles  : [%7.2f] [deg]\n',data(i,3)*180/pi); 
    end 
     
    %Compute Manipulator data 
    q0 = data(1,:); 
    EE = data(2,:); 
    
     
    if not(ishandle( CaptureBox )) 
        q0_meas(end+1,1:3)=q0; 
        EE_meas(end+1,1:3)=EE; 
        CaptureBox = msgbox( 'Capture', 'Vicon data capture' ); 
    end 
     
end               
               
%--- Disconnect and unload ---% 
  
% Disconnect and dispose 
fprintf( 'Disconnect...\n' ); 
ViconClient.Disconnect(); 
% Unload the SDK 
fprintf( 'Unload SDK...\n' ); 
Client.UnloadViconDataStreamSDK(); 
  
%--- Ask to save data ---% 
  
%Generate filename 
filename=sprintf('Vicon_%s_%s.mat','MARSMAN_CAL',datestr(now,30)); 
uisave({'q0_meas','EE_meas'},filename); 
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APPENDIX F. KINEMATICS_SERIAL.M 

% Kinematics_Serial.m computes the kineamtics of a serial manipulator. 
% Developed by Dr. Josep Virgili-Llop 
  
function 
[RJ,RL,r,l,e,t0,tm,Bij,Bi0,P0,pm,TEE]=Kinematics_Serial(R0,r0,qm,q0dot,
qmdot,data) 
% Input -> 
%   R0 -> Rotation matrix from the base-spacecraft to the inertial 
frame. 
%   r0 -> Position of the base-spacecraft to the inertial frame. 
%   qm -> Manipulator joint varibles. 
%   q0dot -> Base-spacecraft velocities [angular velocity in body, 
linear 
%   velocity in inertial]. 
%   qmdot -> Manipulator joint rates. 
%   data -> Manipulator data. 
%       data.n -> Manipulator number of joints and links. 
%       data.base -> Base-spacecraft data 
%           data.base.T_L0_J1 -> Homogeneous transformation of the 
first 
%           joint w.r.t. the base-spacecraft. 
%       data.man -> Manipulator data. 
%           data.man(i).DH -> DH parameters of the ith joint. 
%           data.man(i).type -> Type of joint. type==0 for revolute, 
%           otherwise prismatic. 
%           data.man(i).b -> Vector from the ith link to the following 
%           joint i+1. 
% 
% Output -> 
%   RJ -> Joint 3x3 rotation matrices. 
%   RL -> Links 3x3 rotation matrices. 
%   r -> Links positions. 
%   l -> Joints positions. 
%   e -> Joints rotations axis. 
%   t0 -> Base-spacecraft twist vector 
%   tm -> Manipulator twist vector. 
%   Bij -> Twist-propagation matrix (for manipulator i>0 and j>0). 
%   Bi0 -> Twist-propagation matrix (for i>0 and j=0). 
%   P0 -> Base-spacecraft twist-propagation vector. 
%   pm -> Manipulator twist-propagation vector. 
%   TEE -> End-Effector Homogeneous transformation matrix. 
  
%=== LICENSE ===% 
  
%=== CODE ===% 
  
%--- Number of links and Joints ---% 
n=data.n; 
  
%--- Homogeneous transformation matrices ---% 
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%Pre-allocate homogeneous transformations matrices 
TJ=zeros(4,4,n+1); 
TL=zeros(4,4,n); 
%Base-spacecraft 
T0 = [R0,r0;zeros(1,3),1]; 
%First Joint 
TJ(1:4,1:4,1) =T0*data.base.T_L0_J1; 
%Forward recursive for rest of joints and links 
for i=1:n 
    %Compute Rotation matrix and translation vector from DH parameters 
    [R,s] = DH_Rs(data.man(i).DH,qm(i),data.man(i).type); 
    %Compute joint homogeneous transformation matrix 
    TJ(1:4,1:4,i+1)=TJ(1:4,1:4,i)*[R,s;zeros(1,3),1]; 
    %Compute link homogeneous transformation matrix 
    TL(1:4,1:4,i)=TJ(1:4,1:4,i+1)*[eye(3),-data.man(i).b; zeros(1,3), 
1]; %homog trans matrix of last link 
end 
%End-Effector 
TEE = TJ(1:4,1:4,n+1); %3x3 rotation matrix plus 3x1 translation vector 
describing position of EE 
  
%--- Rotation matrices, translation, position and other geometry 
vectors ---% 
%Pre-allocate rotation matrices, translation and position vectors 
RJ=zeros(3,3,n); 
RL=zeros(3,3,n); 
r=zeros(3,n); 
l=zeros(3,n); 
%Pre-allocate axis 
e=zeros(3,n); 
%Pre-allocate other gemotery vectors 
g=zeros(3,n); 
%Format Rotation matrices, link positions, joint axis and other 
geometry 
%vectors 
for i=1:n 
    RJ(1:3,1:3,i)=TJ(1:3,1:3,i); 
    RL(1:3,1:3,i)=TL(1:3,1:3,i); 
    r(1:3,i)=TL(1:3,4,i); 
    e(1:3,i)=RJ(1:3,3,i); 
    l(1:3,i)=TJ(1:3,4,i); 
    g(1:3,i)=r(1:3,i)-l(1:3,i); 
end 
  
%--- Twist-propagtaion matrix ---% 
%Pre-allocate Bij 
Bij=zeros(6,6,n,n); 
%Compute Bij 
for j=1:n 
    for i=1:n 
        Bij(1:6,1:6,i,j)=[eye(3), zeros(3,3); SkewSym(r(1:3,j)-
r(1:3,i)), eye(3)]; 
    end 
end 
%Pre-allocate Bi0 
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Bi0=zeros(6,6,n); 
%Compute Bi0 
for i=1:n 
    Bi0(1:6,1:6,i)=[eye(3), zeros(3,3); SkewSym(r0-r(1:3,i)), eye(3)]; 
end 
  
%--- Twist-Propagation vector ---% 
%Pre-allocate 
pm=zeros(6,n); 
%Base-spacecraft 
P0=[R0,zeros(3,3); zeros(3,3), eye(3)]; 
%Fordward recursion to obtain the Twist-Propagation vector 
for i=1:n 
    if data.man(i).type==0 
        %Revolute joint 
        pm(1:6,i)=[e(1:3,i);cross(e(1:3,i),g(1:3,i))]; 
    else 
        %Prismatic joint 
        pm(1:6,i).p=[zeros(3,1);e(1:3,i)]; 
    end 
end 
  
%--- Generalized twist vector ---% 
%Pre-Allocate 
tm=zeros(6,n); 
%Base-spacecraft 
t0=P0*q0dot; 
%First link 
tm(1:6,1)=Bi0(1:6,1:6,1)*t0+pm(1:6,1)*qmdot(1); 
%Fordward recursion to obtain the twist vector 
for i=2:n 
    tm(1:6,i)=Bij(1:6,1:6,i,i-1)*tm(1:6,i-1)+pm(1:6,i)*qmdot(i);  
end 
  
end 
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APPENDIX G. DH_RS.M 

% This function computes the rotation matrix R and the translation 
vector s 
% between two joints given their Denavit-Hartenber (DH) parameters. 
% Developed by Dr. Josep Virgili-Llop 
  
function [R,s] = DH_Rs(DH,qm,type) 
% 
% Inputs: 
%   DH -> Denavit-Hartenberg parameters. 
%       DH.d -> Distance between joint origins along the joint z-axis. 
%       DH.theta -> Rotation between x-axis along the joint z-axis. 
%       DH.alpha -> Rotation between z-axis. 
%       DH.a -> Distance between the commaon normal between the z-axis. 
%   qm -> Joint variable. 
%   type -> type==0 for revolute joint or type==1 for prismatic joints. 
% 
% Outputs: 
%   R -> Rotation 3x3 matrix. 
%   s -> Translation 3x1 vector. 
  
%=== LICENSE ===% 
  
%=== CODE ===% 
  
%Assign the d and theta variable depending on joint type 
if type==0 
    %Revolute joint 
    theta=qm; 
    d=DH.d; 
else 
    %Prismatic joint 
    theta=Dh.theta; 
    d=qm; 
end 
     
  
%Rotation matrix 
R = [ 
    cos(theta), -sin(theta)*cos(DH.alpha), sin(theta)*sin(DH.alpha); 
    sin(theta), cos(theta)*cos(DH.alpha),  -cos(theta)*sin(DH.alpha); 
    0,              sin(DH.alpha),                 cos(DH.alpha) 
    ];       
  
%Translation vector 
s = [DH.a*cos(theta), DH.a*sin(theta), d]'; 
  
end 



 124

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 125

APPENDIX H. SKEWSYM.M 

% SkewSym.m computes the skewsymmetric matrix of a vector 
% Developed by Dr. Josep Virgili-Llop 
  
function [x_skew] = SkewSym(x) 
  
x_skew=[0 -x(3) x(2) ; x(3) 0 -x(1) ; -x(2) x(1) 0 ]; 
  
end 
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APPENDIX I. MARSMAN_KINCAL.M 

%MARSMAN_KinCal.m calibrates the kinematic model based on actually 
measured end effector 
%positions 
  
%Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew 
  
% Inputs: 
%   q  -> measured angular positions of each joint 
%   delta_a -> induced variation in DH.a 
%   delta_theta -> induced variation in DH.theta 
%   delta_q -> induced variation in joint position 
%   delta_x -> induced variation in x direction displacement 
%   DH -> Denavit-Hartenberg parameters. 
%       DH.d -> Distance between joint origins along the joint z-axis. 
%       DH.theta -> Rotation between x-axis along the joint z-axis. 
%       DH.alpha -> Rotation between z-axis. 
%       DH.a -> Distance between the commaon normal between the z-axis. 
%   EE_Eul_Ang -> angular component of vector from origin of inertial 
frame to end 
%                 effector, scalar (rad) 
%   Eps -> convergence error tolerance for calibration 
%   I -> inertia of manipulator links 
%   qm -> Joint variable. 
%   mass -> mass of manipulator links (kg) 
%   PHI -> kinematic calibration matrix 
%   r_EE_x -> x component of vector from origin of inertial frame to 
end 
%             effector, scalar (m) 
%   r_EE_y -> y component of vector from origin of inertial frame to 
end 
%             effector, scalar (m) 
%   RBJ1 -> rotation matrix about z of joint 1 with respect to the base 
%   theta_base_J1 -> angular displacement of base with respect to joint 
1  
%                   (inertial frame) 
%   type -> type==0 for revolute joint or type==1 for prismatic joints. 
%   x_base_J1 -> displacement of base with respect to joint 1 in x 
%                direction (inertial frame) 
%   y_base_J1 -> displacement of base with respect to joint 1 in y 
%                direction (inertial frame) 
% 
% Outputs: 
%   Delta_Zeta_Direct -> matrix containing computed variations between 
%                        measured and actual DH parameters 
  
clc 
clear 
close all 
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%Load Data 
load ('Kinematic_Data/Calibration_data_March3.mat') 
load ('Kinematic_Data/Vicon_MARSMAN_CAL_20160303T111525.mat') 
  
%---  Prepare data ---% 
q_meas=q; 
q_meas(3:4,:) = []; %Remove unwanted measurements 
q=[]; %Delete this variable as it is going to be used later on. 
  
  
%--- Define manipulator data ---% 
  
%Number of joints/links 
data.n=4; 
  
%First joint 
data.man(1).type=0; 
data.man(1).DH.d = 0; 
data.man(1).DH.alpha = 0; 
data.man(1).DH.a = .39; %length from joint(i) to joint(i+1), meters 
data.man(1).b = [data.man(1).DH.a/2;0;0]; 
data.man(1).mass=2.88; 
data.man(1).I=eye(3)*0.04; 
data.man(1).q0=0; 
  
%Second joint 
data.man(2)=data.man(1); 
  
%Third joint 
data.man(3)=data.man(1); 
  
%Fourth joint 
data.man(4)=data.man(1); 
  
  
%Base to first link data (initial guess) 
theta_base_J1 = 0; 
x_base_J1 = 0.2; 
y_base_J1 = 0; 
  
%First joint location with respect to base 
RBJ1=[cos(theta_base_J1)   -sin(theta_base_J1)  0; %Rotation matrix 
about z 
    sin(theta_base_J1)  cos(theta_base_J1)  0; 
    0                    0                   1]; 
data.base.T_L0_J1=[RBJ1,[x_base_J1;y_base_J1;0];zeros(1,3),1]; 
  
%Base-spacecraft inertia matrix 
data.base.mass=12; 
data.base.I=eye(3)*0.22; 
  
%--- LSQ Parameters ---% 
Eps = 0.01; % convergence error tolerance 
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Delta_Zeta_Direct = 2*Eps; 
%Variations 
delta_d = 1e-3; %Distance variation 
delta_theta = deg2rad(.01); %Angle variation 
  
%Initial guess on joint offsets 
for j=1:size(q_meas,1) 
    for i=1:data.n 
        q(j,i)=q_meas(j,i)+data.man(i).q0; 
    end 
end 
  
%--- Iterative Batch LSQ ---% 
while max(abs(Delta_Zeta_Direct)) > Eps; 
     
    %Nominal Values 
    [rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data); % kinematic 
model estimate of end effector state 
     
    %--- Derivatives for DH.a for all links except the last one ---% 
    %It is assumed that all links have the same length (except the last 
one) 
    %Copy Manipulator data 
    data_var=data; 
    %Change DH.a 
    for i = 1:data.n-1 
        data_var.man(i).DH.a = data.man(i).DH.a + delta_d; 
    end 
    %Values with varied parameters 
    [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q, 
data_var); % compute position of EE under variation 
    %Partial derivatives matrix 
    PHI(:,1) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta - 
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d]; 
     
    %--- Derivatives for DH.a for the last link ---% 
    %Copy Manipulator data 
    data_var=data; 
    %Change DH.a 
    data_var.man(end).DH.a = data.man(end).DH.a + delta_d; 
    %Values with varied parameters 
    [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q, 
data_var); % compute position of EE under variation 
    %Partial derivatives matrix 
    PHI(:,2) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta - 
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d]; 
     
    %--- Derivatives with respect to Base to First Joint parameters ---
% 
     
    %Angle 
    data_var=data; 
    theta_base_J1_var = theta_base_J1 + delta_theta; 
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    RBJ1=[cos(theta_base_J1_var)   -sin(theta_base_J1_var)  0; %Resets 
RBJ1 to baseline 
        sin(theta_base_J1_var)  cos(theta_base_J1_var)  0; 
        0                    0                   1]; 
     
    data_var.base.T_L0_J1(1:3,1:3)=RBJ1; 
    %Values with varied parameters 
    [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q, 
data_var); % compute position of EE under variation 
    %Partial derivatives matrix 
    PHI(:,3) = [((rEE_x_delta - rEE_x)/delta_theta)'; ((rEE_y_delta - 
rEE_y)/delta_theta)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_theta]; 
     
    %X position of first joint 
    data_var=data; 
    data_var.base.T_L0_J1(1,4)=x_base_J1 + delta_d; 
    %Values with varied parameters 
    [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q, 
data_var); % compute position of EE under variation 
    %Partial derivatives matrix 
    PHI(:,4) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta - 
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d]; 
     
    %X position of first joint 
    data_var=data; 
    data_var.base.T_L0_J1(2,4)=y_base_J1 + delta_d; 
    %Values with varied parameters 
    [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q, 
data_var); % compute position of EE under variation 
    %Partial derivatives matrix 
    PHI(:,5) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta - 
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d]; 
     
    %Joint angle Offsets 
    for i = 2:data.n 
        data_var=data; 
        data_var.man(i).q0=data_var.man(i).q0+delta_theta; 
        q_var=q; 
        for j=1:size(q_meas,1) 
            q_var(j,i)=q_meas(j,i)+data_var.man(i).q0; 
        end 
        %Values with varied parameters 
        [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, 
q_var, data_var); % compute position of EE under variation 
        %Partial derivatives matrix 
        PHI(:,i+5-1) = [((rEE_x_delta - rEE_x)/delta_theta)'; 
((rEE_y_delta - rEE_y)/delta_theta)'; (rEE_theta_delta(:)-
rEE_theta(:))/delta_theta]; 
    end 
     
    %---- Create Delta_x ---% 
    x_n = [rEE_x' ; rEE_y'; rEE_theta']; 
    x_m = [EE_meas(:,1); EE_meas(:,2); EE_meas(:,3)]; 
    Delta_x = x_m - x_n; 
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    %--- Solve LSQ ---% 
    Delta_Zeta_Direct = inv(PHI'*PHI)*PHI'*Delta_x; 
     
     
    %--- Update parameters ---% 
    %Update links lengths 
    for i = 1:data.n-1 
        data.man(i).DH.a = data.man(i).DH.a + Delta_Zeta_Direct(1); 
    end 
    data.man(end).DH.a = data.man(end).DH.a + Delta_Zeta_Direct(2); 
    %Update position of first joint w.r.t base 
    theta_base_J1 = theta_base_J1+ Delta_Zeta_Direct(3); 
    x_base_J1 = x_base_J1 + Delta_Zeta_Direct(4); 
    y_base_J1 = y_base_J1 + Delta_Zeta_Direct(5); 
    RBJ1=[cos(theta_base_J1)   -sin(theta_base_J1)  0; 
        sin(theta_base_J1)  cos(theta_base_J1)  0; 
        0                    0                   1]; 
    data.base.T_L0_J1=[RBJ1,[x_base_J1;y_base_J1;0];zeros(1,3),1]; 
    %Joint offsets 
    for i = 2:data.n 
        data.man(i).q0=data.man(i).q0+Delta_Zeta_Direct(5+i-1); 
    end 
    for j=1:size(q_meas,1) 
        for i=1:data.n 
            q(j,i)=q_meas(j,i)+data.man(i).q0; 
        end 
    end 
     
     
end 
  
%--- Print Results ---% 
for i = 1:data.n 
    fprintf('Link %i DH a: %f m\n',i,data.man(i).DH.a); 
end 
for i = 1:data.n 
    fprintf('Link %i Joint Offset: %f 
deg\n',i,rad2deg(data.man(i).q0)); 
end 
fprintf('L0 to J1 parameters [x,y,theta]: %f m, %f m, %f 
deg.\n',x_base_J1,y_base_J1,rad2deg(theta_base_J1)); 
  
%--- Print Residuals ---% 
fprintf('\n'); 
%Compute kineamtics with last iteration 
[rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data); 
%Compute residuals (mean and std) 
x_res=(rEE_x'-EE_meas(:,1)); 
y_res=(rEE_y'-EE_meas(:,2)); 
pos_res = sqrt(x_res.^2+y_res.^2); 
fprintf('position residuals [mean,std]: %f, %f 
m.\n',mean(pos_res),std(pos_res)); 
%Compute residuals (mean and std) 
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theta_res=(rEE_theta'-EE_meas(:,3)); 
fprintf('theta residuals [mean,std]: %f, %f 
deg.\n',rad2deg(mean(theta_res)),rad2deg(std(theta_res))); 
  
%---Update b vector ---% 
for i = 1:data.n 
    data.man(i).b = [data.man(i).DH.a/2;0;0]; 
end 
  
%--- Save manipulator Data (ready for dynamic calibration) ---% 
save('KinCal_ManData','data'); 

 
 

  



 133

APPENDIX J. X_EE.M 

%Comupte the state of the end-effector according to the kinematic model 
and 
%the joint states (base and manipulator joints). 
  
% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew 
  
function [rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data) 
  
%Iterate throught the different states 
for i = 1:length(q) 
     
    %Base rotation matrix 
    R0=[cos(q0_meas(i,3))   -sin(q0_meas(i,3))  0; 
        sin(q0_meas(i,3))  cos(q0_meas(i,3))  0; 
        0                   0                  1]; 
     
    %Base position 
    r0=[q0_meas(i,1); %translation in x 
        q0_meas(i,2); %translation in y 
        0];           %translation in z 
     
    %Joint variables 
    qm = q(i,:); %manipulator joint states [m x n] where m is the 
number of measurements taken and n is the number of links 
     
    %--- Compute Kinematics, Dynamics, ID, and FD ---% 
     
    %Kinematics 
    
[~,~,~,~,~,~,~,~,~,~,~,TEE]=Kinematics_Serial(R0,r0,qm,zeros(6,1),zeros
(data.n,1),data); 
    rEE_theta(i) = dcm2angle(TEE(1:3,1:3)'); %orientations of EE wrt 
inertial frame 
    rEE_x(1,i) = TEE(1,4); 
    rEE_y(1,i) = TEE(2,4); 
     
end 
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APPENDIX K. MARSMAN_DYNCAL.M 

% Performs the dynamic calibration based upon the dynamic model, 
% measurement data, and the results of the kinematic calibration. 
  
% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew 
  
% Inputs: 
%   delta_d -> distance variation of b vector 
%   delta_m -> mass variation (kg) 
%   delta_I -> inertia variation (kg*m^2) 
%   Delta_x -> difference between measured and nominal base angular 
position  
%   Eps -> convergence error tolerance for calibration 
%   qm1 -> joint positions before maneuver 
%   qm2 -> joint positions after maneuver 
%   q01 -> state (x,y,theta) of base before maneuver 
%   q02 -> state (x,y,theta) of base after maneuver 
%   q0_px -> nominal (predicted) x value of base from dynamic model  
%   q0_py -> nominal (predicted) y value of base from dynamic model 
%   q0_ptheta -> nominal (predicted) theta value of base from dynamic 
model 
%   xEE1 -> end effector state before maneuver 
%   xEE2 -> end effector state after maneuver 
%   x_m -> measured theta value of base  
%   x_n -> nominal (predicted) theta value of base from dynamic model 
%         (q0_ptheta') 
%   I -> inertia of manipulator links 
%   PHI -> dynamic calibration matrix 
  
% Outputs: 
%   Delta_Zeta_Direct -> matrix containing parameter variations with 
%                        respect to the nominal values (Siciliano, p. 
89); 
%                        the solution to the iterative least-squares 
%                        problem 
  
clc 
clear 
close all 
  
%Load Data 
load ('KinCal_ManData.mat') %loads results from kinematic calibration 
  
for i = 1:15 
    
    load (sprintf('DynCal_Data/qmat%i.mat',i)) % loads telemetry joint 
measurements 
    load (sprintf('DynCal_Data/Man_%i.mat',i)) % loads VICON base and 
EE measurements 
     
    %Initial guess on joint offsets 
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    for j=1:size(q,1) 
        for k=1:data.n 
            q(j,k)=q(j,k)+data.man(k).q0; % accounts for offsets 
determined by kinematic calibration 
        end 
    end 
     
    maneuver(i).q01 = q0_meas (1,1:3); % state (x,y,theta) of base at 
beginning of maneuver 
    maneuver(i).q02 = q0_meas (2,1:3); % state (x,y,theta) of base at 
end of maneuver 
    maneuver(i).qm1 = q (1,:); % joint positions before maneuver 
    maneuver(i).qm2 = q (2,:); % joint positions after maneuver 
    maneuver(i).xEE1 = EE_meas (1,1:3); % end effector state before 
maneuver 
    maneuver(i).xEE2 = EE_meas (2,1:3); % end effector state after 
maneuver 
     
end 
  
maneuver([6,7,8,15])=[]; 
maneuver([4,8,10,11])=[]; 
  
%--- LSQ Parameters ---% 
Eps = 0.01; % convergence error tolerance 
Delta_Zeta_Direct = 2*Eps; 
%Variations 
delta_d = 1e-3; % Distance variation of b vector 
delta_m = 1e-3; % Mass variation (kg) 
delta_I = 1e-5; % Inertia variation (kg*m^2) 
  
  
  
%--- Iterative Batch LSQ ---% 
while max(abs(Delta_Zeta_Direct)) > Eps; 
     
    %Nominal Values 
    [q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver, data); % nominal 
(predicted) values from dynamic model 
  
    %--- Derivatives for DH.I for all links ---% 
    %Copy Manipulator data 
    data_var=data; 
    %Change DH.I 
    for i = 1:data.n 
        data_var.man(i).I(3,3) = data.man(i).I(3,3) + delta_I; % 
changing z component of Inertia matrix (in local frame) 
    end 
    %Values with varied parameters 
    [q0_px_delta, q0_py_delta, q0_ptheta_delta] = q0_maneuver(maneuver, 
data_var); 
    PHI(:,1) = [((q0_ptheta_delta - q0_ptheta)/delta_I)']; 
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%     %--- Derivatives for DH.I for the last link ---% 
%     %Copy Manipulator data 
%     data_var=data; 
%      
%     data_var.man(end).I(3,3) = data.man(end).I(3,3) + delta_I; 
%      
%     %Values with varied parameters 
%     [q0_px_delta, q0_py_delta, q0_ptheta_delta] = 
q0_maneuver(maneuver, data_var); 
%     PHI(:,2) = [((q0_ptheta_delta - q0_ptheta)/delta_I)']; 
     
     
    %---- Create Delta_x ---% 
    x_n = q0_ptheta'; 
    for i=1:length(maneuver) 
        x_mx(i,1)=maneuver(i).q02(1); 
        x_my(i,1)=maneuver(i).q02(2); 
        x_mtheta(i,1)=maneuver(i).q02(3); 
    end 
    x_m = x_mtheta; 
    Delta_x = wrapToPi(x_m - x_n); 
     
    %--- Solve LSQ ---% 
    Delta_Zeta_Direct = inv(PHI'*PHI)*PHI'*Delta_x; 
     
     
    %--- Update parameters ---% 
    %Update links Inertia 
    for i = 1:data.n 
        data.man(i).I(3,3) = data.man(i).I(3,3) + 
Delta_Zeta_Direct(1)/10; 
    end 
     
end 
  
%--- Print Results ---% 
for i = 1:data.n 
    fprintf('Link %i I: %f kg m^2\n',i,data.man(i).I(3,3)); 
end 
for i = 1:data.n 
    fprintf('Link %i b: %f m\n',i,data.man(i).b(1)); 
end 
  
%--- Print Residuals ---% 
fprintf('\n'); 
%Compute kineamtics with last iteration 
[q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver, data); 
%Compute residuals (mean and std) 
x_n = q0_ptheta'; 
q0_theta_res= rad2deg(wrapToPi(x_m - x_n)); 
fprintf('position residuals [mean,std]: %f, %f 
deg.\n',mean(q0_theta_res),std(q0_theta_res)); 
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%--- Save manipulator Data (ready for dynamic calibration) ---% 
save('DynCal_ManData','data'); 
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APPENDIX L. I_I.M  

% Converts the inertias in local frame to inertia in the inertial 
frame. 
% Developed by Dr. Josep Virgili-Llop 
  
function [I0,Im]=I_I(R0,RL,data) 
% Input -> 
%   R0 -> Rotation matrix from the base-spacecraft to the inertial 
frame. 
%   RL -> Links 3x3 rotation matrices. 
%       data.n -> Manipulator number of joints and links. 
%       data.man -> Manipulator data. 
%       data.man(i).I -> Link inertia. 
% Output -> 
%   I0 -> Base-spacecraft inertia in inertial frame. 
%   Im -> Manipulator inertia in inertial frame. 
  
%=== LICENSE ===% 
  
%=== CODE ===% 
  
%Base-spacecraft inertia 
I0 = R0*data.base.I; 
%Pre-allocate inertias 
Im=zeros(3,3,data.n); 
%Inertias of the links 
for i=1:(data.n) 
    Im(1:3,1:3,i)=RL(1:3,1:3,i)*data.man(i).I*RL(1:3,1:3,i)'; 
end 
  
end 
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APPENDIX M. MCB_SERIAL.M 

% Computes the Mass Composite Body matrix of a Serial Manipulator. 
% Developed by Dr. Josep Virgili-Llop 
  
function [M0_tilde,Mm_tilde]=MCB_Serial(I0,Im,Bij,Bi0,data) 
% Input -> 
%   I0 -> Base-spacecraft inertia in inertial frame. 
%   Im -> Manipulator inertia in inertial frame. 
%   Bij -> Twist-propagation matrix (for manipulator i>0 and j>0). 
%   Bi0 -> Twist-propagation matrix (for i>0 and j=0). 
%       data.base -> Base-spacecraft data 
%           data.base.mass -> Base-spacecraft mass. 
%       data.man -> Manipulator data. 
%           data.man.n -> Manipulator number of joints and links. 
%           data.man(i).mass -> Link mass. 
% Output -> 
%   M0_tilde -> Base-spacecraft mass matrix of composite body. 
%   Mm_tilde -> Manipulator mass matrix of composite body. 
  
%=== LICENSE ===% 
  
%=== CODE ===% 
%Number of links and Joints 
n=data.n; 
%Pre-allocate 
Mm_tilde=zeros(6,6,n); 
%Initialize M tilde 
Mm_tilde(1:6,1:6,n)=[Im(1:3,1:3,n),zeros(3,3);zeros(3,3),data.man(n).ma
ss*eye(3)]; 
%Backwards recursion  
for i=n-1:-1:1 
    
Mm_tilde(1:6,1:6,i)=[Im(1:3,1:3,i),zeros(3,3);zeros(3,3),data.man(i).ma
ss*eye(3)]+Bij(1:6,1:6,i+1,i)'*Mm_tilde(1:6,1:6,i+1)*Bij(1:6,1:6,i+1,i)
; 
end 
%Base-spacecraft M tilde 
M0_tilde=[I0,zeros(3,3);zeros(3,3),data.base.mass*eye(3)]+Bi0(1:6,1:6,1
)'*Mm_tilde(1:6,1:6,1)*Bi0(1:6,1:6,1); 
  
end 
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APPENDIX N. GIM_SERIAL.M 

% Computes the Generalized Inertia Matrix of a Serial Manipulator. 
% Developed by Dr. Josep Virgili-Llop  
  
function [H0, H0m, Hm] = 
GIM_Serial(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,data) 
% 
% Input -> 
%   M0_tilde -> Base-spacecraft mass matrix of composite body. 
%   Mm_tilde -> Manipulator mass matrix of composite body. 
%   Bij -> Twist-propagation matrix (for manipulator i>0 and j>0). 
%   Bi0 -> Twist-propagation matrix (for i>0 and j=0). 
%   P0 -> Base-spacecraft twist-propagation vector. 
%   pm -> Manipulator twist-propagation vector. 
%   data -> Manipulator data. 
%       data.n -> Manipulator number of joints and links. 
% 
% Output -> 
%   H0 -> Base-spacecraft inertia matrix. 
%   H0m -> Base-spacecraft - manipulator coupling inertia matrix. 
%   Hm -> Manipulator inertia matrix. 
  
%=== LICENSE ===% 
  
  
%=== CODE ===% 
  
%--- Number of links and Joints ---% 
n=data.n; 
  
%--- H Martix ---% 
%Base-spacecraft Inertia matrix 
H0 = P0'*M0_tilde*P0; 
%Pre-allocate Hm 
Hm=zeros(n,n); 
%Manipulator Inertia matrix Hm 
for j=1:n 
    for i=j:n 
        
Hm(i,j)=pm(1:6,i)'*Mm_tilde(1:6,1:6,i)*Bij(1:6,1:6,i,j)*pm(1:6,j); 
        Hm(j,i)=Hm(i,j); 
    end 
end 
%Pre-allocate H0m 
H0m=zeros(6,n); 
%Coupling Inertia matrix 
for i=1:n 
    H0m(1:6,i)=(pm(1:6,i)'*Mm_tilde(1:6,1:6,i)*Bi0(1:6,1:6,i)*P0)'; 
end 
  
end 
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APPENDIX O. Q_DOT_FUN.M 

% Computes time derivatives of the base-spacecraft state vector (q_dot) 
% Developed by Dr. Josep Virgili-Llop 
  
function [q_dot] = q_dot_fun(t,q,qmdot,maneuver,data) 
% 
% Inputs: 
%   Bij -> Twist-propagation matrix (for manipulator i>0 and j>0). 
%   Bi0 -> Twist-propagation matrix (for i>0 and j=0). 
%   H0 -> Base-spacecraft inertia matrix. 
%   H0m -> Base-spacecraft - manipulator coupling inertia matrix. 
%   Hm -> Manipulator inertia matrix. 
%   I0 -> Base-spacecraft inertia in inertial frame. 
%   Im -> Manipulator inertia in inertial frame. 
%   M0_tilde -> Base-spacecraft mass matrix of composite body. 
%   Mm_tilde -> Manipulator mass matrix of composite body. 
%   P0 -> Base-spacecraft twist-propagation vector. 
%   pm -> Manipulator twist-propagation vector. 
%   R0 -> Rotation matrix from the base-spacecraft to the inertial 
frame. 
%   r0 -> Position of the base-spacecraft to the inertial frame. 
% 
% Outputs: 
%  q_dot -> derivative of the state vector of the spacecraft base and 
%           manipulator joints, of the form [q0_dot;qm_dot] 
  
  
%--- Derivative of qm ---% 
q_dot(4:3+data.n)=qmdot; 
  
%--- Derivative of q0 ---% 
%Base rotation matrix 
R0=[cos(maneuver.q01(3))   -sin(maneuver.q01(3))  0; 
    sin(maneuver.q01(3))  cos(maneuver.q01(3))  0; 
    0                   0                  1]; 
  
%Base position 
r0=[maneuver.q01(1); %translation in x 
    maneuver.q01(2); %translation in y 
    0];           %translation in z 
  
%Kinematics 
[~,RL,~,~,~,~,~,Bij,Bi0,P0,pm,~]=Kinematics_Serial(R0,r0,q(4:end),zeros
(6,1),zeros(data.n,1),data); 
%Inertias 
[I0,Im]=I_I(R0,RL,data); 
%Mass Composite Body matrix 
[M0_tilde,Mm_tilde]=MCB_Serial(I0,Im,Bij,Bi0,data); 
%Generalized Inertia matrix 
[H0, H0m, ~] = GIM_Serial(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,data); 
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q0_dot= -inv(H0) * H0m * qmdot'; 
q_dot(1:3) = q0_dot([4,5,3]); 
 
q_dot=q_dot(:); 
 
 
end 
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APPENDIX P. Q0_MANEUVER.M 

% q0_maneuver.m predicts the coordinates of the base's position in the 
inertial frame by 
% integrating the joint velocities. 
% 
% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew 
% 
% Inputs:  
%   maneuver -> structure containing position data of base, joints, and 
%               end effector before and after maneuver 
%   data -> structure containing number of links, DH parameters, mass, 
%           inertias, types of joints, and initial state vector of the 
%           system 
%  
% Outputs: 
%    q0_px -> nominal position data of base and joints (x coordinates) 
%    q0_py -> nominal position data of base and joints (y coordinates) 
%    q0_theta -> nominal position data of base and joints (theta 
coordinates) 
  
function [q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver,data) 
  
Delta_t=5.0; 
  
for i = 1:length(maneuver) 
     
    qmdot = (maneuver(i).qm2-maneuver(i).qm1)/Delta_t; %assume 
denominator is t = 1 
     
    ode_deriv=@(t,q)q_dot_fun(t,q,qmdot,maneuver(i),data); % q=[q0,qm] 
    options = odeset('RelTol',1e-12,'AbsTol',1e-12); 
    [t,q0]=ode45(ode_deriv,[0:1e-
3:Delta_t],[maneuver(i).q01,maneuver(i).qm1],options); 
     
     
    q0_px(i)=q0(end,1); 
    q0_py(i)=q0(end,2); 
    q0_ptheta(i)=q0(end,3); 
     
end 
  
end 
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